Cargando…
The Initial Response of a Eukaryotic Replisome to DNA Damage
The replisome must overcome DNA damage to ensure complete chromosome replication. Here, we describe the earliest events in this process by reconstituting collisions between a eukaryotic replisome, assembled with purified proteins, and DNA damage. Lagging-strand lesions are bypassed without delay, le...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024075/ https://www.ncbi.nlm.nih.gov/pubmed/29944888 http://dx.doi.org/10.1016/j.molcel.2018.04.022 |
_version_ | 1783335989618409472 |
---|---|
author | Taylor, Martin R.G. Yeeles, Joseph T.P. |
author_facet | Taylor, Martin R.G. Yeeles, Joseph T.P. |
author_sort | Taylor, Martin R.G. |
collection | PubMed |
description | The replisome must overcome DNA damage to ensure complete chromosome replication. Here, we describe the earliest events in this process by reconstituting collisions between a eukaryotic replisome, assembled with purified proteins, and DNA damage. Lagging-strand lesions are bypassed without delay, leaving daughter-strand gaps roughly the size of an Okazaki fragment. In contrast, leading-strand polymerase stalling significantly impacts replication fork progression. We reveal that the core replisome itself can bypass leading-strand damage by re-priming synthesis beyond it. Surprisingly, this restart activity is rare, mainly due to inefficient leading-strand re-priming, rather than single-stranded DNA exposure or primer extension. We find several unanticipated mechanistic distinctions between leading- and lagging-strand priming that we propose control the replisome’s initial response to DNA damage. Notably, leading-strand restart was specifically stimulated by RPA depletion, which can occur under conditions of replication stress. Our results have implications for pathway choice at stalled forks and priming at DNA replication origins. |
format | Online Article Text |
id | pubmed-6024075 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-60240752018-07-05 The Initial Response of a Eukaryotic Replisome to DNA Damage Taylor, Martin R.G. Yeeles, Joseph T.P. Mol Cell Article The replisome must overcome DNA damage to ensure complete chromosome replication. Here, we describe the earliest events in this process by reconstituting collisions between a eukaryotic replisome, assembled with purified proteins, and DNA damage. Lagging-strand lesions are bypassed without delay, leaving daughter-strand gaps roughly the size of an Okazaki fragment. In contrast, leading-strand polymerase stalling significantly impacts replication fork progression. We reveal that the core replisome itself can bypass leading-strand damage by re-priming synthesis beyond it. Surprisingly, this restart activity is rare, mainly due to inefficient leading-strand re-priming, rather than single-stranded DNA exposure or primer extension. We find several unanticipated mechanistic distinctions between leading- and lagging-strand priming that we propose control the replisome’s initial response to DNA damage. Notably, leading-strand restart was specifically stimulated by RPA depletion, which can occur under conditions of replication stress. Our results have implications for pathway choice at stalled forks and priming at DNA replication origins. Cell Press 2018-06-21 /pmc/articles/PMC6024075/ /pubmed/29944888 http://dx.doi.org/10.1016/j.molcel.2018.04.022 Text en © 2018 MRC Laboratory of Molecular Biology http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Taylor, Martin R.G. Yeeles, Joseph T.P. The Initial Response of a Eukaryotic Replisome to DNA Damage |
title | The Initial Response of a Eukaryotic Replisome to DNA Damage |
title_full | The Initial Response of a Eukaryotic Replisome to DNA Damage |
title_fullStr | The Initial Response of a Eukaryotic Replisome to DNA Damage |
title_full_unstemmed | The Initial Response of a Eukaryotic Replisome to DNA Damage |
title_short | The Initial Response of a Eukaryotic Replisome to DNA Damage |
title_sort | initial response of a eukaryotic replisome to dna damage |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024075/ https://www.ncbi.nlm.nih.gov/pubmed/29944888 http://dx.doi.org/10.1016/j.molcel.2018.04.022 |
work_keys_str_mv | AT taylormartinrg theinitialresponseofaeukaryoticreplisometodnadamage AT yeelesjosephtp theinitialresponseofaeukaryoticreplisometodnadamage AT taylormartinrg initialresponseofaeukaryoticreplisometodnadamage AT yeelesjosephtp initialresponseofaeukaryoticreplisometodnadamage |