Cargando…

Degradation of histone deacetylase 4 via the TLR4/JAK/STAT1 signaling pathway promotes the acetylation of high mobility group box 1 (HMGB1) in lipopolysaccharide‐activated macrophages

High mobility group box 1 (HMGB1) has been proposed as crucial in the pathogenesis of many diseases including sepsis. Acetylation of HMGB1 prevents its entry into the nucleus and leads to its secretion from the cell where it can trigger inflammation. We hypothesized that histone deacetylase 4 (HDAC4...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Eun J., Kim, Young M., Kim, Hye J., Chang, Ki C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6026695/
https://www.ncbi.nlm.nih.gov/pubmed/29988587
http://dx.doi.org/10.1002/2211-5463.12456
Descripción
Sumario:High mobility group box 1 (HMGB1) has been proposed as crucial in the pathogenesis of many diseases including sepsis. Acetylation of HMGB1 prevents its entry into the nucleus and leads to its secretion from the cell where it can trigger inflammation. We hypothesized that histone deacetylase 4 (HDAC4) controls the acetylation of HMGB1 in lipopolysaccharide (LPS)‐stimulated RAW264.7 cells via the janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. The results showed that LPS treatment promoted the degradation of HDAC4 in a proteasome‐dependent manner, which led to HMGB1 acetylation. In LPS‐activated RAW264.7 cells, treatment with TAK‐242 (a toll like receptor 4 inhibitor) and pyridone 6 (a JAK inhibitor) significantly inhibited HDAC4 degradation and acetylation of HMGB1, and thus prevented secretion of HMGB1. Decreased phosphorylation of STAT1 was also observed. Interestingly, HDAC4 overexpression significantly prevented the acetylation and secretion of HMGB1 in both RAW264.7 cells and isolated murine peritoneal macrophages. We conclude that HDAC4 might be a useful target for the treatment of sepsis.