Cargando…
Reframing the Biological Basis of Neuroprotection Using Functional Genomics: Differentially Weighted, Time-Dependent Multifactor Pathogenesis of Human Ischemic Brain Damage
Background: Neuroprotection studies are generally unable to demonstrate efficacy in humans. Our specific hypothesis is that multiple pathophysiologic pathways, of variable importance, contribute to ischemic brain damage. As a corollary to this, we discuss the broad hypothesis that a multifaceted app...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028620/ https://www.ncbi.nlm.nih.gov/pubmed/29997569 http://dx.doi.org/10.3389/fneur.2018.00497 |
_version_ | 1783336804004397056 |
---|---|
author | Kofke, William A. Ren, Yue Augoustides, John G. Li, Hongzhe Nathanson, Katherine Siman, Robert Meng, Qing Cheng Bu, Weiming Yandrawatthana, Sukanya Kositratna, Guy Kim, Cecilia Bavaria, Joseph E. |
author_facet | Kofke, William A. Ren, Yue Augoustides, John G. Li, Hongzhe Nathanson, Katherine Siman, Robert Meng, Qing Cheng Bu, Weiming Yandrawatthana, Sukanya Kositratna, Guy Kim, Cecilia Bavaria, Joseph E. |
author_sort | Kofke, William A. |
collection | PubMed |
description | Background: Neuroprotection studies are generally unable to demonstrate efficacy in humans. Our specific hypothesis is that multiple pathophysiologic pathways, of variable importance, contribute to ischemic brain damage. As a corollary to this, we discuss the broad hypothesis that a multifaceted approach will improve the probability of efficacious neuroprotection. But to properly test this hypothesis the nature and importance of the multiple contributing pathways needs elucidation. Our aim is to demonstrate, using functional genomics, in human cardiac surgery procedures associated with cerebral ischemia, that the pathogenesis of perioperative human ischemic brain damage involves the function of multiple variably weighted proteins involving several pathways. We then use these data and literature to develop a proposal for rational design of human neuroprotection protocols. Methods: Ninety-four patients undergoing deep hypothermic circulatory arrest (DHCA) and/or aortic valve replacement surgery had brain damage biomarkers, S100β and neurofilament H (NFH), assessed at baseline, 1 and 24 h post-cardiopulmonary bypass (CPB) with analysis for association with 92 single nucleotide polymorphisms (SNPs) (selected by co-author WAK) related to important proteins involved in pathogenesis of cerebral ischemia. Results: At the nominal significance level of 0.05, changes in S100β and in NFH at 1 and 24 h post-CPB were associated with multiple SNPs involving several prospectively determined pathophysiologic pathways, but were not individually significant after multiple comparison adjustments. Variable weights for the several evaluated SNPs are apparent on regression analysis and, notably, are dissimilar related to the two biomarkers and over time post CPB. Based on our step-wise regression model, at 1 h post-CPB, SOD2, SUMO4, and GP6 are related to relative change of NFH while TNF, CAPN10, NPPB, and SERPINE1 are related to the relative change of S100B. At 24 h post-CPB, ADRA2A, SELE, and BAX are related to the relative change of NFH while SLC4A7, HSPA1B, and FGA are related to S100B. Conclusions: In support of the proposed hypothesis, association SNP data suggest function of specific disparate proteins, as reflected by genetic variation, may be more important than others with variation at different post-insult times after human brain ischemia. Such information may support rational design of post-insult time-sensitive multifaceted neuroprotective therapies. |
format | Online Article Text |
id | pubmed-6028620 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-60286202018-07-11 Reframing the Biological Basis of Neuroprotection Using Functional Genomics: Differentially Weighted, Time-Dependent Multifactor Pathogenesis of Human Ischemic Brain Damage Kofke, William A. Ren, Yue Augoustides, John G. Li, Hongzhe Nathanson, Katherine Siman, Robert Meng, Qing Cheng Bu, Weiming Yandrawatthana, Sukanya Kositratna, Guy Kim, Cecilia Bavaria, Joseph E. Front Neurol Neurology Background: Neuroprotection studies are generally unable to demonstrate efficacy in humans. Our specific hypothesis is that multiple pathophysiologic pathways, of variable importance, contribute to ischemic brain damage. As a corollary to this, we discuss the broad hypothesis that a multifaceted approach will improve the probability of efficacious neuroprotection. But to properly test this hypothesis the nature and importance of the multiple contributing pathways needs elucidation. Our aim is to demonstrate, using functional genomics, in human cardiac surgery procedures associated with cerebral ischemia, that the pathogenesis of perioperative human ischemic brain damage involves the function of multiple variably weighted proteins involving several pathways. We then use these data and literature to develop a proposal for rational design of human neuroprotection protocols. Methods: Ninety-four patients undergoing deep hypothermic circulatory arrest (DHCA) and/or aortic valve replacement surgery had brain damage biomarkers, S100β and neurofilament H (NFH), assessed at baseline, 1 and 24 h post-cardiopulmonary bypass (CPB) with analysis for association with 92 single nucleotide polymorphisms (SNPs) (selected by co-author WAK) related to important proteins involved in pathogenesis of cerebral ischemia. Results: At the nominal significance level of 0.05, changes in S100β and in NFH at 1 and 24 h post-CPB were associated with multiple SNPs involving several prospectively determined pathophysiologic pathways, but were not individually significant after multiple comparison adjustments. Variable weights for the several evaluated SNPs are apparent on regression analysis and, notably, are dissimilar related to the two biomarkers and over time post CPB. Based on our step-wise regression model, at 1 h post-CPB, SOD2, SUMO4, and GP6 are related to relative change of NFH while TNF, CAPN10, NPPB, and SERPINE1 are related to the relative change of S100B. At 24 h post-CPB, ADRA2A, SELE, and BAX are related to the relative change of NFH while SLC4A7, HSPA1B, and FGA are related to S100B. Conclusions: In support of the proposed hypothesis, association SNP data suggest function of specific disparate proteins, as reflected by genetic variation, may be more important than others with variation at different post-insult times after human brain ischemia. Such information may support rational design of post-insult time-sensitive multifaceted neuroprotective therapies. Frontiers Media S.A. 2018-06-26 /pmc/articles/PMC6028620/ /pubmed/29997569 http://dx.doi.org/10.3389/fneur.2018.00497 Text en Copyright © 2018 Kofke, Ren, Augoustides, Li, Nathanson, Siman, Meng, Bu, Yandrawatthana, Kositratna, Kim and Bavaria. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neurology Kofke, William A. Ren, Yue Augoustides, John G. Li, Hongzhe Nathanson, Katherine Siman, Robert Meng, Qing Cheng Bu, Weiming Yandrawatthana, Sukanya Kositratna, Guy Kim, Cecilia Bavaria, Joseph E. Reframing the Biological Basis of Neuroprotection Using Functional Genomics: Differentially Weighted, Time-Dependent Multifactor Pathogenesis of Human Ischemic Brain Damage |
title | Reframing the Biological Basis of Neuroprotection Using Functional Genomics: Differentially Weighted, Time-Dependent Multifactor Pathogenesis of Human Ischemic Brain Damage |
title_full | Reframing the Biological Basis of Neuroprotection Using Functional Genomics: Differentially Weighted, Time-Dependent Multifactor Pathogenesis of Human Ischemic Brain Damage |
title_fullStr | Reframing the Biological Basis of Neuroprotection Using Functional Genomics: Differentially Weighted, Time-Dependent Multifactor Pathogenesis of Human Ischemic Brain Damage |
title_full_unstemmed | Reframing the Biological Basis of Neuroprotection Using Functional Genomics: Differentially Weighted, Time-Dependent Multifactor Pathogenesis of Human Ischemic Brain Damage |
title_short | Reframing the Biological Basis of Neuroprotection Using Functional Genomics: Differentially Weighted, Time-Dependent Multifactor Pathogenesis of Human Ischemic Brain Damage |
title_sort | reframing the biological basis of neuroprotection using functional genomics: differentially weighted, time-dependent multifactor pathogenesis of human ischemic brain damage |
topic | Neurology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028620/ https://www.ncbi.nlm.nih.gov/pubmed/29997569 http://dx.doi.org/10.3389/fneur.2018.00497 |
work_keys_str_mv | AT kofkewilliama reframingthebiologicalbasisofneuroprotectionusingfunctionalgenomicsdifferentiallyweightedtimedependentmultifactorpathogenesisofhumanischemicbraindamage AT renyue reframingthebiologicalbasisofneuroprotectionusingfunctionalgenomicsdifferentiallyweightedtimedependentmultifactorpathogenesisofhumanischemicbraindamage AT augoustidesjohng reframingthebiologicalbasisofneuroprotectionusingfunctionalgenomicsdifferentiallyweightedtimedependentmultifactorpathogenesisofhumanischemicbraindamage AT lihongzhe reframingthebiologicalbasisofneuroprotectionusingfunctionalgenomicsdifferentiallyweightedtimedependentmultifactorpathogenesisofhumanischemicbraindamage AT nathansonkatherine reframingthebiologicalbasisofneuroprotectionusingfunctionalgenomicsdifferentiallyweightedtimedependentmultifactorpathogenesisofhumanischemicbraindamage AT simanrobert reframingthebiologicalbasisofneuroprotectionusingfunctionalgenomicsdifferentiallyweightedtimedependentmultifactorpathogenesisofhumanischemicbraindamage AT mengqingcheng reframingthebiologicalbasisofneuroprotectionusingfunctionalgenomicsdifferentiallyweightedtimedependentmultifactorpathogenesisofhumanischemicbraindamage AT buweiming reframingthebiologicalbasisofneuroprotectionusingfunctionalgenomicsdifferentiallyweightedtimedependentmultifactorpathogenesisofhumanischemicbraindamage AT yandrawatthanasukanya reframingthebiologicalbasisofneuroprotectionusingfunctionalgenomicsdifferentiallyweightedtimedependentmultifactorpathogenesisofhumanischemicbraindamage AT kositratnaguy reframingthebiologicalbasisofneuroprotectionusingfunctionalgenomicsdifferentiallyweightedtimedependentmultifactorpathogenesisofhumanischemicbraindamage AT kimcecilia reframingthebiologicalbasisofneuroprotectionusingfunctionalgenomicsdifferentiallyweightedtimedependentmultifactorpathogenesisofhumanischemicbraindamage AT bavariajosephe reframingthebiologicalbasisofneuroprotectionusingfunctionalgenomicsdifferentiallyweightedtimedependentmultifactorpathogenesisofhumanischemicbraindamage |