Cargando…

Enhancing bulk defect-mediated absorption in silicon waveguides by doping compensation technique

Silicon waveguide photodiodes (SiWG PD) based on the bulk defect-mediated absorption (BDA) of sub-bandgap photons are suitable to realize in-line optical power monitors for silicon photonic integrated circuits. Deep-level states to enable the BDA can be induced by exploiting the ion implantation ste...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Qiang, Yu, Hui, Qi, Tian, Fu, Zhilei, Jiang, Xiaoqing, Yang, Jianyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028655/
https://www.ncbi.nlm.nih.gov/pubmed/29967412
http://dx.doi.org/10.1038/s41598-018-28139-w
Descripción
Sumario:Silicon waveguide photodiodes (SiWG PD) based on the bulk defect-mediated absorption (BDA) of sub-bandgap photons are suitable to realize in-line optical power monitors for silicon photonic integrated circuits. Deep-level states to enable the BDA can be induced by exploiting the ion implantation steps that are used to embed PN junctions for carrier-depletion-based modulators. This manner usually exhibits limited responsivities since relevant processing conditions are optimized for the modulation rather than the BDA. In this letter, we solve this issue with the doping compensation technique. This technique overlaps P-type and N-type implantation windows at the waveguide core. The responsivity is enhanced due to the increased density of lattice defects and the reduced density of free carriers in the compensated silicon. Influences of the dimension of the dopant compensation region on responsivity and operation speed are investigated. As the width of this region increases from 0 μm to 0.4 μm, the responsivity at −5 V is improved from 2 mA/W to 17.5 mA/W. This level is comparable to BDA based SiWG PDs relying on dedicated ion bombardments. On the other hand, a bit-error-rate test at 10 Gb/s suggests that the device with 0.2-μm-wide compensation region exhibits the highest sensitivity.