Cargando…
SAVER: Gene expression recovery for single-cell RNA sequencing
In single-cell RNA sequencing (scRNA-seq) studies, only a small fraction of the transcripts present in each cell are sequenced. This leads to unreliable quantification of lowly and moderately expressed genes which hinders downstream analysis. To address this challenge, we introduce SAVER (Single-cel...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030502/ https://www.ncbi.nlm.nih.gov/pubmed/29941873 http://dx.doi.org/10.1038/s41592-018-0033-z |
_version_ | 1783337154062057472 |
---|---|
author | Huang, Mo Wang, Jingshu Torre, Eduardo Dueck, Hannah Shaffer, Sydney Bonasio, Roberto Murray, John I. Raj, Arjun Li, Mingyao Zhang, Nancy R. |
author_facet | Huang, Mo Wang, Jingshu Torre, Eduardo Dueck, Hannah Shaffer, Sydney Bonasio, Roberto Murray, John I. Raj, Arjun Li, Mingyao Zhang, Nancy R. |
author_sort | Huang, Mo |
collection | PubMed |
description | In single-cell RNA sequencing (scRNA-seq) studies, only a small fraction of the transcripts present in each cell are sequenced. This leads to unreliable quantification of lowly and moderately expressed genes which hinders downstream analysis. To address this challenge, we introduce SAVER (Single-cell Analysis Via Expression Recovery), an expression recovery method for UMI-based scRNA-seq data that borrows information across genes and cells to obtain accurate expression estimates for all genes. |
format | Online Article Text |
id | pubmed-6030502 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-60305022018-12-25 SAVER: Gene expression recovery for single-cell RNA sequencing Huang, Mo Wang, Jingshu Torre, Eduardo Dueck, Hannah Shaffer, Sydney Bonasio, Roberto Murray, John I. Raj, Arjun Li, Mingyao Zhang, Nancy R. Nat Methods Article In single-cell RNA sequencing (scRNA-seq) studies, only a small fraction of the transcripts present in each cell are sequenced. This leads to unreliable quantification of lowly and moderately expressed genes which hinders downstream analysis. To address this challenge, we introduce SAVER (Single-cell Analysis Via Expression Recovery), an expression recovery method for UMI-based scRNA-seq data that borrows information across genes and cells to obtain accurate expression estimates for all genes. 2018-06-25 2018-07 /pmc/articles/PMC6030502/ /pubmed/29941873 http://dx.doi.org/10.1038/s41592-018-0033-z Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Huang, Mo Wang, Jingshu Torre, Eduardo Dueck, Hannah Shaffer, Sydney Bonasio, Roberto Murray, John I. Raj, Arjun Li, Mingyao Zhang, Nancy R. SAVER: Gene expression recovery for single-cell RNA sequencing |
title | SAVER: Gene expression recovery for single-cell RNA sequencing |
title_full | SAVER: Gene expression recovery for single-cell RNA sequencing |
title_fullStr | SAVER: Gene expression recovery for single-cell RNA sequencing |
title_full_unstemmed | SAVER: Gene expression recovery for single-cell RNA sequencing |
title_short | SAVER: Gene expression recovery for single-cell RNA sequencing |
title_sort | saver: gene expression recovery for single-cell rna sequencing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030502/ https://www.ncbi.nlm.nih.gov/pubmed/29941873 http://dx.doi.org/10.1038/s41592-018-0033-z |
work_keys_str_mv | AT huangmo savergeneexpressionrecoveryforsinglecellrnasequencing AT wangjingshu savergeneexpressionrecoveryforsinglecellrnasequencing AT torreeduardo savergeneexpressionrecoveryforsinglecellrnasequencing AT dueckhannah savergeneexpressionrecoveryforsinglecellrnasequencing AT shaffersydney savergeneexpressionrecoveryforsinglecellrnasequencing AT bonasioroberto savergeneexpressionrecoveryforsinglecellrnasequencing AT murrayjohni savergeneexpressionrecoveryforsinglecellrnasequencing AT rajarjun savergeneexpressionrecoveryforsinglecellrnasequencing AT limingyao savergeneexpressionrecoveryforsinglecellrnasequencing AT zhangnancyr savergeneexpressionrecoveryforsinglecellrnasequencing |