Cargando…

The Role of Mass Spectrometry and Proteogenomics in the Advancement of HLA Epitope Prediction

A challenge in developing personalized cancer immunotherapies is the prediction of putative cancer‐specific antigens. Currently, predictive algorithms are used to infer binding of peptides to human leukocyte antigen (HLA) heterodimers to aid in the selection of putative epitope targets. One drawback...

Descripción completa

Detalles Bibliográficos
Autores principales: Creech, Amanda L., Ting, Ying S., Goulding, Scott P., Sauld, John F.K., Barthelme, Dominik, Rooney, Michael S., Addona, Terri A., Abelin, Jennifer G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033110/
https://www.ncbi.nlm.nih.gov/pubmed/29314742
http://dx.doi.org/10.1002/pmic.201700259
_version_ 1783337637492293632
author Creech, Amanda L.
Ting, Ying S.
Goulding, Scott P.
Sauld, John F.K.
Barthelme, Dominik
Rooney, Michael S.
Addona, Terri A.
Abelin, Jennifer G.
author_facet Creech, Amanda L.
Ting, Ying S.
Goulding, Scott P.
Sauld, John F.K.
Barthelme, Dominik
Rooney, Michael S.
Addona, Terri A.
Abelin, Jennifer G.
author_sort Creech, Amanda L.
collection PubMed
description A challenge in developing personalized cancer immunotherapies is the prediction of putative cancer‐specific antigens. Currently, predictive algorithms are used to infer binding of peptides to human leukocyte antigen (HLA) heterodimers to aid in the selection of putative epitope targets. One drawback of current epitope prediction algorithms is that they are trained on datasets containing biochemical HLA‐peptide binding data that may not completely capture the rules associated with endogenous processing and presentation. The field of MS has made great improvements in instrumentation speed and sensitivity, chromatographic resolution, and proteogenomic database search strategies to facilitate the identification of HLA‐ligands from a variety of cell types and tumor tissues. As such, these advances have enabled MS profiling of HLA‐binding peptides to be a tractable, orthogonal approach to lower throughput biochemical assays for generating comprehensive datasets to train epitope prediction algorithms. In this review, we will highlight the progress made in the field of HLA‐ligand profiling enabled by MS and its impact on current and future epitope prediction strategies.
format Online
Article
Text
id pubmed-6033110
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-60331102018-07-12 The Role of Mass Spectrometry and Proteogenomics in the Advancement of HLA Epitope Prediction Creech, Amanda L. Ting, Ying S. Goulding, Scott P. Sauld, John F.K. Barthelme, Dominik Rooney, Michael S. Addona, Terri A. Abelin, Jennifer G. Proteomics Reviews A challenge in developing personalized cancer immunotherapies is the prediction of putative cancer‐specific antigens. Currently, predictive algorithms are used to infer binding of peptides to human leukocyte antigen (HLA) heterodimers to aid in the selection of putative epitope targets. One drawback of current epitope prediction algorithms is that they are trained on datasets containing biochemical HLA‐peptide binding data that may not completely capture the rules associated with endogenous processing and presentation. The field of MS has made great improvements in instrumentation speed and sensitivity, chromatographic resolution, and proteogenomic database search strategies to facilitate the identification of HLA‐ligands from a variety of cell types and tumor tissues. As such, these advances have enabled MS profiling of HLA‐binding peptides to be a tractable, orthogonal approach to lower throughput biochemical assays for generating comprehensive datasets to train epitope prediction algorithms. In this review, we will highlight the progress made in the field of HLA‐ligand profiling enabled by MS and its impact on current and future epitope prediction strategies. John Wiley and Sons Inc. 2018-02-23 2018-06 /pmc/articles/PMC6033110/ /pubmed/29314742 http://dx.doi.org/10.1002/pmic.201700259 Text en © 2018 Neon Therapeutics. Proteomics Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Reviews
Creech, Amanda L.
Ting, Ying S.
Goulding, Scott P.
Sauld, John F.K.
Barthelme, Dominik
Rooney, Michael S.
Addona, Terri A.
Abelin, Jennifer G.
The Role of Mass Spectrometry and Proteogenomics in the Advancement of HLA Epitope Prediction
title The Role of Mass Spectrometry and Proteogenomics in the Advancement of HLA Epitope Prediction
title_full The Role of Mass Spectrometry and Proteogenomics in the Advancement of HLA Epitope Prediction
title_fullStr The Role of Mass Spectrometry and Proteogenomics in the Advancement of HLA Epitope Prediction
title_full_unstemmed The Role of Mass Spectrometry and Proteogenomics in the Advancement of HLA Epitope Prediction
title_short The Role of Mass Spectrometry and Proteogenomics in the Advancement of HLA Epitope Prediction
title_sort role of mass spectrometry and proteogenomics in the advancement of hla epitope prediction
topic Reviews
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033110/
https://www.ncbi.nlm.nih.gov/pubmed/29314742
http://dx.doi.org/10.1002/pmic.201700259
work_keys_str_mv AT creechamandal theroleofmassspectrometryandproteogenomicsintheadvancementofhlaepitopeprediction
AT tingyings theroleofmassspectrometryandproteogenomicsintheadvancementofhlaepitopeprediction
AT gouldingscottp theroleofmassspectrometryandproteogenomicsintheadvancementofhlaepitopeprediction
AT sauldjohnfk theroleofmassspectrometryandproteogenomicsintheadvancementofhlaepitopeprediction
AT barthelmedominik theroleofmassspectrometryandproteogenomicsintheadvancementofhlaepitopeprediction
AT rooneymichaels theroleofmassspectrometryandproteogenomicsintheadvancementofhlaepitopeprediction
AT addonaterria theroleofmassspectrometryandproteogenomicsintheadvancementofhlaepitopeprediction
AT abelinjenniferg theroleofmassspectrometryandproteogenomicsintheadvancementofhlaepitopeprediction
AT creechamandal roleofmassspectrometryandproteogenomicsintheadvancementofhlaepitopeprediction
AT tingyings roleofmassspectrometryandproteogenomicsintheadvancementofhlaepitopeprediction
AT gouldingscottp roleofmassspectrometryandproteogenomicsintheadvancementofhlaepitopeprediction
AT sauldjohnfk roleofmassspectrometryandproteogenomicsintheadvancementofhlaepitopeprediction
AT barthelmedominik roleofmassspectrometryandproteogenomicsintheadvancementofhlaepitopeprediction
AT rooneymichaels roleofmassspectrometryandproteogenomicsintheadvancementofhlaepitopeprediction
AT addonaterria roleofmassspectrometryandproteogenomicsintheadvancementofhlaepitopeprediction
AT abelinjenniferg roleofmassspectrometryandproteogenomicsintheadvancementofhlaepitopeprediction