Cargando…
Nanoscale synchrotron X-ray speciation of iron and calcium compounds in amyloid plaque cores from Alzheimer's disease subjects
Altered metabolism of biometals in the brain is a key feature of Alzheimer's disease, and biometal interactions with amyloid-β are linked to amyloid plaque formation. Iron-rich aggregates, including evidence for the mixed-valence iron oxide magnetite, are associated with amyloid plaques. To tes...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6034173/ https://www.ncbi.nlm.nih.gov/pubmed/29688240 http://dx.doi.org/10.1039/c7nr06794a |
_version_ | 1783337825048985600 |
---|---|
author | Everett, James Collingwood, Joanna F. Tjendana-Tjhin, Vindy Brooks, Jake Lermyte, Frederik Plascencia-Villa, Germán Hands-Portman, Ian Dobson, Jon Perry, George Telling, Neil D. |
author_facet | Everett, James Collingwood, Joanna F. Tjendana-Tjhin, Vindy Brooks, Jake Lermyte, Frederik Plascencia-Villa, Germán Hands-Portman, Ian Dobson, Jon Perry, George Telling, Neil D. |
author_sort | Everett, James |
collection | PubMed |
description | Altered metabolism of biometals in the brain is a key feature of Alzheimer's disease, and biometal interactions with amyloid-β are linked to amyloid plaque formation. Iron-rich aggregates, including evidence for the mixed-valence iron oxide magnetite, are associated with amyloid plaques. To test the hypothesis that increased chemical reduction of iron, as observed in vitro in the presence of aggregating amyloid-β, may occur at sites of amyloid plaque formation in the human brain, the nanoscale distribution and physicochemical states of biometals, particularly iron, were characterised in isolated amyloid plaque cores from human Alzheimer's disease cases using synchrotron X-ray spectromicroscopy. In situ X-ray magnetic circular dichroism revealed the presence of magnetite: a finding supported by ptychographic observation of an iron oxide crystal with the morphology of biogenic magnetite. The exceptional sensitivity and specificity of X-ray spectromicroscopy, combining chemical and magnetic probes, allowed enhanced differentiation of the iron oxides phases present. This facilitated the discovery and speciation of ferrous-rich phases and lower oxidation state phases resembling zero-valent iron as well as magnetite. Sequestered calcium was discovered in two distinct mineral forms suggesting a dynamic process of amyloid plaque calcification in vivo. The range of iron oxidation states present and the direct observation of biogenic magnetite provide unparalleled support for the hypothesis that chemical reduction of iron arises in conjunction with the formation of amyloid plaques. These new findings raise challenging questions about the relative impacts of amyloid-β aggregation, plaque formation, and disrupted metal homeostasis on the oxidative burden observed in Alzheimer's disease. |
format | Online Article Text |
id | pubmed-6034173 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-60341732018-07-26 Nanoscale synchrotron X-ray speciation of iron and calcium compounds in amyloid plaque cores from Alzheimer's disease subjects Everett, James Collingwood, Joanna F. Tjendana-Tjhin, Vindy Brooks, Jake Lermyte, Frederik Plascencia-Villa, Germán Hands-Portman, Ian Dobson, Jon Perry, George Telling, Neil D. Nanoscale Chemistry Altered metabolism of biometals in the brain is a key feature of Alzheimer's disease, and biometal interactions with amyloid-β are linked to amyloid plaque formation. Iron-rich aggregates, including evidence for the mixed-valence iron oxide magnetite, are associated with amyloid plaques. To test the hypothesis that increased chemical reduction of iron, as observed in vitro in the presence of aggregating amyloid-β, may occur at sites of amyloid plaque formation in the human brain, the nanoscale distribution and physicochemical states of biometals, particularly iron, were characterised in isolated amyloid plaque cores from human Alzheimer's disease cases using synchrotron X-ray spectromicroscopy. In situ X-ray magnetic circular dichroism revealed the presence of magnetite: a finding supported by ptychographic observation of an iron oxide crystal with the morphology of biogenic magnetite. The exceptional sensitivity and specificity of X-ray spectromicroscopy, combining chemical and magnetic probes, allowed enhanced differentiation of the iron oxides phases present. This facilitated the discovery and speciation of ferrous-rich phases and lower oxidation state phases resembling zero-valent iron as well as magnetite. Sequestered calcium was discovered in two distinct mineral forms suggesting a dynamic process of amyloid plaque calcification in vivo. The range of iron oxidation states present and the direct observation of biogenic magnetite provide unparalleled support for the hypothesis that chemical reduction of iron arises in conjunction with the formation of amyloid plaques. These new findings raise challenging questions about the relative impacts of amyloid-β aggregation, plaque formation, and disrupted metal homeostasis on the oxidative burden observed in Alzheimer's disease. Royal Society of Chemistry 2018-07-07 2018-04-24 /pmc/articles/PMC6034173/ /pubmed/29688240 http://dx.doi.org/10.1039/c7nr06794a Text en This journal is © The Royal Society of Chemistry 2018 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
spellingShingle | Chemistry Everett, James Collingwood, Joanna F. Tjendana-Tjhin, Vindy Brooks, Jake Lermyte, Frederik Plascencia-Villa, Germán Hands-Portman, Ian Dobson, Jon Perry, George Telling, Neil D. Nanoscale synchrotron X-ray speciation of iron and calcium compounds in amyloid plaque cores from Alzheimer's disease subjects |
title | Nanoscale synchrotron X-ray speciation of iron and calcium compounds in amyloid plaque cores from Alzheimer's disease subjects
|
title_full | Nanoscale synchrotron X-ray speciation of iron and calcium compounds in amyloid plaque cores from Alzheimer's disease subjects
|
title_fullStr | Nanoscale synchrotron X-ray speciation of iron and calcium compounds in amyloid plaque cores from Alzheimer's disease subjects
|
title_full_unstemmed | Nanoscale synchrotron X-ray speciation of iron and calcium compounds in amyloid plaque cores from Alzheimer's disease subjects
|
title_short | Nanoscale synchrotron X-ray speciation of iron and calcium compounds in amyloid plaque cores from Alzheimer's disease subjects
|
title_sort | nanoscale synchrotron x-ray speciation of iron and calcium compounds in amyloid plaque cores from alzheimer's disease subjects |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6034173/ https://www.ncbi.nlm.nih.gov/pubmed/29688240 http://dx.doi.org/10.1039/c7nr06794a |
work_keys_str_mv | AT everettjames nanoscalesynchrotronxrayspeciationofironandcalciumcompoundsinamyloidplaquecoresfromalzheimersdiseasesubjects AT collingwoodjoannaf nanoscalesynchrotronxrayspeciationofironandcalciumcompoundsinamyloidplaquecoresfromalzheimersdiseasesubjects AT tjendanatjhinvindy nanoscalesynchrotronxrayspeciationofironandcalciumcompoundsinamyloidplaquecoresfromalzheimersdiseasesubjects AT brooksjake nanoscalesynchrotronxrayspeciationofironandcalciumcompoundsinamyloidplaquecoresfromalzheimersdiseasesubjects AT lermytefrederik nanoscalesynchrotronxrayspeciationofironandcalciumcompoundsinamyloidplaquecoresfromalzheimersdiseasesubjects AT plascenciavillagerman nanoscalesynchrotronxrayspeciationofironandcalciumcompoundsinamyloidplaquecoresfromalzheimersdiseasesubjects AT handsportmanian nanoscalesynchrotronxrayspeciationofironandcalciumcompoundsinamyloidplaquecoresfromalzheimersdiseasesubjects AT dobsonjon nanoscalesynchrotronxrayspeciationofironandcalciumcompoundsinamyloidplaquecoresfromalzheimersdiseasesubjects AT perrygeorge nanoscalesynchrotronxrayspeciationofironandcalciumcompoundsinamyloidplaquecoresfromalzheimersdiseasesubjects AT tellingneild nanoscalesynchrotronxrayspeciationofironandcalciumcompoundsinamyloidplaquecoresfromalzheimersdiseasesubjects |