Suspended Materials in River Waters Differentially Enrich Class 1 Integron- and IncP-1 Plasmid-Carrying Bacteria in Sediments
Aquatic ecosystems are frequently considered as the final receiving environments of anthropogenic pollutants such as pharmaceutical residues or antibiotic resistant bacteria, and as a consequence tend to form reservoirs of antibiotic resistance genes. Considering the global threat posed by the antib...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6036612/ https://www.ncbi.nlm.nih.gov/pubmed/30013540 http://dx.doi.org/10.3389/fmicb.2018.01443 |
_version_ | 1783338191378448384 |
---|---|
author | De la Cruz Barrón, Magali Merlin, Christophe Guilloteau, Hélène Montargès-Pelletier, Emmanuelle Bellanger, Xavier |
author_facet | De la Cruz Barrón, Magali Merlin, Christophe Guilloteau, Hélène Montargès-Pelletier, Emmanuelle Bellanger, Xavier |
author_sort | De la Cruz Barrón, Magali |
collection | PubMed |
description | Aquatic ecosystems are frequently considered as the final receiving environments of anthropogenic pollutants such as pharmaceutical residues or antibiotic resistant bacteria, and as a consequence tend to form reservoirs of antibiotic resistance genes. Considering the global threat posed by the antibiotic resistance, the mechanisms involved in both the formation of such reservoirs and their remobilization are a concern of prime importance. Antibiotic resistance genes are strongly associated with mobile genetic elements that are directly involved in their dissemination. Most mobile genetic element-mediated gene transfers involve replicative mechanisms and, as such, localized gene transfers should participate in the local increase in resistance gene abundance. Additionally, the carriage of conjugative mobile elements encoding cell appendages acting as adhesins has already been demonstrated to increase biofilm-forming capability of bacteria and, therefore, should also contribute to their selective enrichment on surfaces. In the present study, we investigated the occurrence of two families of mobile genetic elements, IncP-1 plasmids and class 1 integrons, in the water column and bank sediments of the Orne River, in France. We show that these mobile elements, especially IncP-1 plasmids, are enriched in the bacteria attached on the suspended matters in the river waters, and that a similar abundance is found in freshly deposited sediments. Using the IncP-1 plasmid pB10 as a model, in vitro experiments demonstrated that local enrichment of plasmid-bearing bacteria on artificial surfaces mainly resulted from an increase in bacterial adhesion properties conferred by the plasmid rather than an improved dissemination frequency of the plasmid between surface-attached bacteria. We propose plasmid-mediated adhesion to particles to be one of the main contributors in the formation of mobile genetic element-reservoirs in sediments, with adhesion to suspended matter working as a selective enrichment process of antibiotic resistant genes and bacteria. |
format | Online Article Text |
id | pubmed-6036612 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-60366122018-07-16 Suspended Materials in River Waters Differentially Enrich Class 1 Integron- and IncP-1 Plasmid-Carrying Bacteria in Sediments De la Cruz Barrón, Magali Merlin, Christophe Guilloteau, Hélène Montargès-Pelletier, Emmanuelle Bellanger, Xavier Front Microbiol Microbiology Aquatic ecosystems are frequently considered as the final receiving environments of anthropogenic pollutants such as pharmaceutical residues or antibiotic resistant bacteria, and as a consequence tend to form reservoirs of antibiotic resistance genes. Considering the global threat posed by the antibiotic resistance, the mechanisms involved in both the formation of such reservoirs and their remobilization are a concern of prime importance. Antibiotic resistance genes are strongly associated with mobile genetic elements that are directly involved in their dissemination. Most mobile genetic element-mediated gene transfers involve replicative mechanisms and, as such, localized gene transfers should participate in the local increase in resistance gene abundance. Additionally, the carriage of conjugative mobile elements encoding cell appendages acting as adhesins has already been demonstrated to increase biofilm-forming capability of bacteria and, therefore, should also contribute to their selective enrichment on surfaces. In the present study, we investigated the occurrence of two families of mobile genetic elements, IncP-1 plasmids and class 1 integrons, in the water column and bank sediments of the Orne River, in France. We show that these mobile elements, especially IncP-1 plasmids, are enriched in the bacteria attached on the suspended matters in the river waters, and that a similar abundance is found in freshly deposited sediments. Using the IncP-1 plasmid pB10 as a model, in vitro experiments demonstrated that local enrichment of plasmid-bearing bacteria on artificial surfaces mainly resulted from an increase in bacterial adhesion properties conferred by the plasmid rather than an improved dissemination frequency of the plasmid between surface-attached bacteria. We propose plasmid-mediated adhesion to particles to be one of the main contributors in the formation of mobile genetic element-reservoirs in sediments, with adhesion to suspended matter working as a selective enrichment process of antibiotic resistant genes and bacteria. Frontiers Media S.A. 2018-07-02 /pmc/articles/PMC6036612/ /pubmed/30013540 http://dx.doi.org/10.3389/fmicb.2018.01443 Text en Copyright © 2018 De la Cruz Barrón, Merlin, Guilloteau, Montargès-Pelletier and Bellanger. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology De la Cruz Barrón, Magali Merlin, Christophe Guilloteau, Hélène Montargès-Pelletier, Emmanuelle Bellanger, Xavier Suspended Materials in River Waters Differentially Enrich Class 1 Integron- and IncP-1 Plasmid-Carrying Bacteria in Sediments |
title | Suspended Materials in River Waters Differentially Enrich Class 1 Integron- and IncP-1 Plasmid-Carrying Bacteria in Sediments |
title_full | Suspended Materials in River Waters Differentially Enrich Class 1 Integron- and IncP-1 Plasmid-Carrying Bacteria in Sediments |
title_fullStr | Suspended Materials in River Waters Differentially Enrich Class 1 Integron- and IncP-1 Plasmid-Carrying Bacteria in Sediments |
title_full_unstemmed | Suspended Materials in River Waters Differentially Enrich Class 1 Integron- and IncP-1 Plasmid-Carrying Bacteria in Sediments |
title_short | Suspended Materials in River Waters Differentially Enrich Class 1 Integron- and IncP-1 Plasmid-Carrying Bacteria in Sediments |
title_sort | suspended materials in river waters differentially enrich class 1 integron- and incp-1 plasmid-carrying bacteria in sediments |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6036612/ https://www.ncbi.nlm.nih.gov/pubmed/30013540 http://dx.doi.org/10.3389/fmicb.2018.01443 |
work_keys_str_mv | AT delacruzbarronmagali suspendedmaterialsinriverwatersdifferentiallyenrichclass1integronandincp1plasmidcarryingbacteriainsediments AT merlinchristophe suspendedmaterialsinriverwatersdifferentiallyenrichclass1integronandincp1plasmidcarryingbacteriainsediments AT guilloteauhelene suspendedmaterialsinriverwatersdifferentiallyenrichclass1integronandincp1plasmidcarryingbacteriainsediments AT montargespelletieremmanuelle suspendedmaterialsinriverwatersdifferentiallyenrichclass1integronandincp1plasmidcarryingbacteriainsediments AT bellangerxavier suspendedmaterialsinriverwatersdifferentiallyenrichclass1integronandincp1plasmidcarryingbacteriainsediments |