Cargando…
A TFEB nuclear export signal integrates amino acid supply and glucose availability
How cells coordinate the response to fluctuating carbon and nitrogen availability required to maintain effective homeostasis is a key issue. Amino acid limitation that inactivates mTORC1 promotes de-phosphorylation and nuclear translocation of Transcription Factor EB (TFEB), a key transcriptional re...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041281/ https://www.ncbi.nlm.nih.gov/pubmed/29992949 http://dx.doi.org/10.1038/s41467-018-04849-7 |
_version_ | 1783338960086368256 |
---|---|
author | Li, Linxin Friedrichsen, Hans J. Andrews, Sarah Picaud, Sarah Volpon, Laurent Ngeow, Kaochin Berridge, Georgina Fischer, Roman Borden, Katherine L. B. Filippakopoulos, Panagis Goding, Colin R. |
author_facet | Li, Linxin Friedrichsen, Hans J. Andrews, Sarah Picaud, Sarah Volpon, Laurent Ngeow, Kaochin Berridge, Georgina Fischer, Roman Borden, Katherine L. B. Filippakopoulos, Panagis Goding, Colin R. |
author_sort | Li, Linxin |
collection | PubMed |
description | How cells coordinate the response to fluctuating carbon and nitrogen availability required to maintain effective homeostasis is a key issue. Amino acid limitation that inactivates mTORC1 promotes de-phosphorylation and nuclear translocation of Transcription Factor EB (TFEB), a key transcriptional regulator of lysosome biogenesis and autophagy that is deregulated in cancer and neurodegeneration. Beyond its cytoplasmic sequestration, how TFEB phosphorylation regulates its nuclear-cytoplasmic shuttling, and whether TFEB can coordinate amino acid supply with glucose availability is poorly understood. Here we show that TFEB phosphorylation on S142 primes for GSK3β phosphorylation on S138, and that phosphorylation of both sites but not either alone activates a previously unrecognized nuclear export signal (NES). Importantly, GSK3β is inactivated by AKT in response to mTORC2 signaling triggered by glucose limitation. Remarkably therefore, the TFEB NES integrates carbon (glucose) and nitrogen (amino acid) availability by controlling TFEB flux through a nuclear import-export cycle. |
format | Online Article Text |
id | pubmed-6041281 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-60412812018-07-13 A TFEB nuclear export signal integrates amino acid supply and glucose availability Li, Linxin Friedrichsen, Hans J. Andrews, Sarah Picaud, Sarah Volpon, Laurent Ngeow, Kaochin Berridge, Georgina Fischer, Roman Borden, Katherine L. B. Filippakopoulos, Panagis Goding, Colin R. Nat Commun Article How cells coordinate the response to fluctuating carbon and nitrogen availability required to maintain effective homeostasis is a key issue. Amino acid limitation that inactivates mTORC1 promotes de-phosphorylation and nuclear translocation of Transcription Factor EB (TFEB), a key transcriptional regulator of lysosome biogenesis and autophagy that is deregulated in cancer and neurodegeneration. Beyond its cytoplasmic sequestration, how TFEB phosphorylation regulates its nuclear-cytoplasmic shuttling, and whether TFEB can coordinate amino acid supply with glucose availability is poorly understood. Here we show that TFEB phosphorylation on S142 primes for GSK3β phosphorylation on S138, and that phosphorylation of both sites but not either alone activates a previously unrecognized nuclear export signal (NES). Importantly, GSK3β is inactivated by AKT in response to mTORC2 signaling triggered by glucose limitation. Remarkably therefore, the TFEB NES integrates carbon (glucose) and nitrogen (amino acid) availability by controlling TFEB flux through a nuclear import-export cycle. Nature Publishing Group UK 2018-07-11 /pmc/articles/PMC6041281/ /pubmed/29992949 http://dx.doi.org/10.1038/s41467-018-04849-7 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Li, Linxin Friedrichsen, Hans J. Andrews, Sarah Picaud, Sarah Volpon, Laurent Ngeow, Kaochin Berridge, Georgina Fischer, Roman Borden, Katherine L. B. Filippakopoulos, Panagis Goding, Colin R. A TFEB nuclear export signal integrates amino acid supply and glucose availability |
title | A TFEB nuclear export signal integrates amino acid supply and glucose availability |
title_full | A TFEB nuclear export signal integrates amino acid supply and glucose availability |
title_fullStr | A TFEB nuclear export signal integrates amino acid supply and glucose availability |
title_full_unstemmed | A TFEB nuclear export signal integrates amino acid supply and glucose availability |
title_short | A TFEB nuclear export signal integrates amino acid supply and glucose availability |
title_sort | tfeb nuclear export signal integrates amino acid supply and glucose availability |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041281/ https://www.ncbi.nlm.nih.gov/pubmed/29992949 http://dx.doi.org/10.1038/s41467-018-04849-7 |
work_keys_str_mv | AT lilinxin atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT friedrichsenhansj atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT andrewssarah atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT picaudsarah atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT volponlaurent atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT ngeowkaochin atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT berridgegeorgina atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT fischerroman atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT bordenkatherinelb atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT filippakopoulospanagis atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT godingcolinr atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT lilinxin tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT friedrichsenhansj tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT andrewssarah tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT picaudsarah tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT volponlaurent tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT ngeowkaochin tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT berridgegeorgina tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT fischerroman tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT bordenkatherinelb tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT filippakopoulospanagis tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability AT godingcolinr tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability |