Cargando…

A TFEB nuclear export signal integrates amino acid supply and glucose availability

How cells coordinate the response to fluctuating carbon and nitrogen availability required to maintain effective homeostasis is a key issue. Amino acid limitation that inactivates mTORC1 promotes de-phosphorylation and nuclear translocation of Transcription Factor EB (TFEB), a key transcriptional re...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Linxin, Friedrichsen, Hans J., Andrews, Sarah, Picaud, Sarah, Volpon, Laurent, Ngeow, Kaochin, Berridge, Georgina, Fischer, Roman, Borden, Katherine L. B., Filippakopoulos, Panagis, Goding, Colin R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041281/
https://www.ncbi.nlm.nih.gov/pubmed/29992949
http://dx.doi.org/10.1038/s41467-018-04849-7
_version_ 1783338960086368256
author Li, Linxin
Friedrichsen, Hans J.
Andrews, Sarah
Picaud, Sarah
Volpon, Laurent
Ngeow, Kaochin
Berridge, Georgina
Fischer, Roman
Borden, Katherine L. B.
Filippakopoulos, Panagis
Goding, Colin R.
author_facet Li, Linxin
Friedrichsen, Hans J.
Andrews, Sarah
Picaud, Sarah
Volpon, Laurent
Ngeow, Kaochin
Berridge, Georgina
Fischer, Roman
Borden, Katherine L. B.
Filippakopoulos, Panagis
Goding, Colin R.
author_sort Li, Linxin
collection PubMed
description How cells coordinate the response to fluctuating carbon and nitrogen availability required to maintain effective homeostasis is a key issue. Amino acid limitation that inactivates mTORC1 promotes de-phosphorylation and nuclear translocation of Transcription Factor EB (TFEB), a key transcriptional regulator of lysosome biogenesis and autophagy that is deregulated in cancer and neurodegeneration. Beyond its cytoplasmic sequestration, how TFEB phosphorylation regulates its nuclear-cytoplasmic shuttling, and whether TFEB can coordinate amino acid supply with glucose availability is poorly understood. Here we show that TFEB phosphorylation on S142 primes for GSK3β phosphorylation on S138, and that phosphorylation of both sites but not either alone activates a previously unrecognized nuclear export signal (NES). Importantly, GSK3β is inactivated by AKT in response to mTORC2 signaling triggered by glucose limitation. Remarkably therefore, the TFEB NES integrates carbon (glucose) and nitrogen (amino acid) availability by controlling TFEB flux through a nuclear import-export cycle.
format Online
Article
Text
id pubmed-6041281
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-60412812018-07-13 A TFEB nuclear export signal integrates amino acid supply and glucose availability Li, Linxin Friedrichsen, Hans J. Andrews, Sarah Picaud, Sarah Volpon, Laurent Ngeow, Kaochin Berridge, Georgina Fischer, Roman Borden, Katherine L. B. Filippakopoulos, Panagis Goding, Colin R. Nat Commun Article How cells coordinate the response to fluctuating carbon and nitrogen availability required to maintain effective homeostasis is a key issue. Amino acid limitation that inactivates mTORC1 promotes de-phosphorylation and nuclear translocation of Transcription Factor EB (TFEB), a key transcriptional regulator of lysosome biogenesis and autophagy that is deregulated in cancer and neurodegeneration. Beyond its cytoplasmic sequestration, how TFEB phosphorylation regulates its nuclear-cytoplasmic shuttling, and whether TFEB can coordinate amino acid supply with glucose availability is poorly understood. Here we show that TFEB phosphorylation on S142 primes for GSK3β phosphorylation on S138, and that phosphorylation of both sites but not either alone activates a previously unrecognized nuclear export signal (NES). Importantly, GSK3β is inactivated by AKT in response to mTORC2 signaling triggered by glucose limitation. Remarkably therefore, the TFEB NES integrates carbon (glucose) and nitrogen (amino acid) availability by controlling TFEB flux through a nuclear import-export cycle. Nature Publishing Group UK 2018-07-11 /pmc/articles/PMC6041281/ /pubmed/29992949 http://dx.doi.org/10.1038/s41467-018-04849-7 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Li, Linxin
Friedrichsen, Hans J.
Andrews, Sarah
Picaud, Sarah
Volpon, Laurent
Ngeow, Kaochin
Berridge, Georgina
Fischer, Roman
Borden, Katherine L. B.
Filippakopoulos, Panagis
Goding, Colin R.
A TFEB nuclear export signal integrates amino acid supply and glucose availability
title A TFEB nuclear export signal integrates amino acid supply and glucose availability
title_full A TFEB nuclear export signal integrates amino acid supply and glucose availability
title_fullStr A TFEB nuclear export signal integrates amino acid supply and glucose availability
title_full_unstemmed A TFEB nuclear export signal integrates amino acid supply and glucose availability
title_short A TFEB nuclear export signal integrates amino acid supply and glucose availability
title_sort tfeb nuclear export signal integrates amino acid supply and glucose availability
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041281/
https://www.ncbi.nlm.nih.gov/pubmed/29992949
http://dx.doi.org/10.1038/s41467-018-04849-7
work_keys_str_mv AT lilinxin atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT friedrichsenhansj atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT andrewssarah atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT picaudsarah atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT volponlaurent atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT ngeowkaochin atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT berridgegeorgina atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT fischerroman atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT bordenkatherinelb atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT filippakopoulospanagis atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT godingcolinr atfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT lilinxin tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT friedrichsenhansj tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT andrewssarah tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT picaudsarah tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT volponlaurent tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT ngeowkaochin tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT berridgegeorgina tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT fischerroman tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT bordenkatherinelb tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT filippakopoulospanagis tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability
AT godingcolinr tfebnuclearexportsignalintegratesaminoacidsupplyandglucoseavailability