Cargando…

A Novel Stochastic Multi-Scale Model of Francisella tularensis Infection to Predict Risk of Infection in a Laboratory

We present a multi-scale model of the within-phagocyte, within-host and population-level infection dynamics of Francisella tularensis, which extends the mechanistic one proposed by Wood et al. (2014). Our multi-scale model incorporates key aspects of the interaction between host phagocytes and extra...

Descripción completa

Detalles Bibliográficos
Autores principales: Carruthers, Jonathan, López-García, Martín, Gillard, Joseph J., Laws, Thomas R., Lythe, Grant, Molina-París, Carmen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6043654/
https://www.ncbi.nlm.nih.gov/pubmed/30034369
http://dx.doi.org/10.3389/fmicb.2018.01165
_version_ 1783339326685315072
author Carruthers, Jonathan
López-García, Martín
Gillard, Joseph J.
Laws, Thomas R.
Lythe, Grant
Molina-París, Carmen
author_facet Carruthers, Jonathan
López-García, Martín
Gillard, Joseph J.
Laws, Thomas R.
Lythe, Grant
Molina-París, Carmen
author_sort Carruthers, Jonathan
collection PubMed
description We present a multi-scale model of the within-phagocyte, within-host and population-level infection dynamics of Francisella tularensis, which extends the mechanistic one proposed by Wood et al. (2014). Our multi-scale model incorporates key aspects of the interaction between host phagocytes and extracellular bacteria, accounts for inter-phagocyte variability in the number of bacteria released upon phagocyte rupture, and allows one to compute the probability of response, and mean time until response, of an infected individual as a function of the initial infection dose. A Bayesian approach is applied to parameterize both the within-phagocyte and within-host models using infection data. Finally, we show how dose response probabilities at the individual level can be used to estimate the airborne propagation of Francisella tularensis in indoor settings (such as a microbiology laboratory) at the population level, by means of a deterministic zonal ventilation model.
format Online
Article
Text
id pubmed-6043654
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-60436542018-07-20 A Novel Stochastic Multi-Scale Model of Francisella tularensis Infection to Predict Risk of Infection in a Laboratory Carruthers, Jonathan López-García, Martín Gillard, Joseph J. Laws, Thomas R. Lythe, Grant Molina-París, Carmen Front Microbiol Microbiology We present a multi-scale model of the within-phagocyte, within-host and population-level infection dynamics of Francisella tularensis, which extends the mechanistic one proposed by Wood et al. (2014). Our multi-scale model incorporates key aspects of the interaction between host phagocytes and extracellular bacteria, accounts for inter-phagocyte variability in the number of bacteria released upon phagocyte rupture, and allows one to compute the probability of response, and mean time until response, of an infected individual as a function of the initial infection dose. A Bayesian approach is applied to parameterize both the within-phagocyte and within-host models using infection data. Finally, we show how dose response probabilities at the individual level can be used to estimate the airborne propagation of Francisella tularensis in indoor settings (such as a microbiology laboratory) at the population level, by means of a deterministic zonal ventilation model. Frontiers Media S.A. 2018-07-06 /pmc/articles/PMC6043654/ /pubmed/30034369 http://dx.doi.org/10.3389/fmicb.2018.01165 Text en Copyright © 2018 Carruthers, López-García, Gillard, Laws, Lythe and Molina-París. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Carruthers, Jonathan
López-García, Martín
Gillard, Joseph J.
Laws, Thomas R.
Lythe, Grant
Molina-París, Carmen
A Novel Stochastic Multi-Scale Model of Francisella tularensis Infection to Predict Risk of Infection in a Laboratory
title A Novel Stochastic Multi-Scale Model of Francisella tularensis Infection to Predict Risk of Infection in a Laboratory
title_full A Novel Stochastic Multi-Scale Model of Francisella tularensis Infection to Predict Risk of Infection in a Laboratory
title_fullStr A Novel Stochastic Multi-Scale Model of Francisella tularensis Infection to Predict Risk of Infection in a Laboratory
title_full_unstemmed A Novel Stochastic Multi-Scale Model of Francisella tularensis Infection to Predict Risk of Infection in a Laboratory
title_short A Novel Stochastic Multi-Scale Model of Francisella tularensis Infection to Predict Risk of Infection in a Laboratory
title_sort novel stochastic multi-scale model of francisella tularensis infection to predict risk of infection in a laboratory
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6043654/
https://www.ncbi.nlm.nih.gov/pubmed/30034369
http://dx.doi.org/10.3389/fmicb.2018.01165
work_keys_str_mv AT carruthersjonathan anovelstochasticmultiscalemodeloffrancisellatularensisinfectiontopredictriskofinfectioninalaboratory
AT lopezgarciamartin anovelstochasticmultiscalemodeloffrancisellatularensisinfectiontopredictriskofinfectioninalaboratory
AT gillardjosephj anovelstochasticmultiscalemodeloffrancisellatularensisinfectiontopredictriskofinfectioninalaboratory
AT lawsthomasr anovelstochasticmultiscalemodeloffrancisellatularensisinfectiontopredictriskofinfectioninalaboratory
AT lythegrant anovelstochasticmultiscalemodeloffrancisellatularensisinfectiontopredictriskofinfectioninalaboratory
AT molinapariscarmen anovelstochasticmultiscalemodeloffrancisellatularensisinfectiontopredictriskofinfectioninalaboratory
AT carruthersjonathan novelstochasticmultiscalemodeloffrancisellatularensisinfectiontopredictriskofinfectioninalaboratory
AT lopezgarciamartin novelstochasticmultiscalemodeloffrancisellatularensisinfectiontopredictriskofinfectioninalaboratory
AT gillardjosephj novelstochasticmultiscalemodeloffrancisellatularensisinfectiontopredictriskofinfectioninalaboratory
AT lawsthomasr novelstochasticmultiscalemodeloffrancisellatularensisinfectiontopredictriskofinfectioninalaboratory
AT lythegrant novelstochasticmultiscalemodeloffrancisellatularensisinfectiontopredictriskofinfectioninalaboratory
AT molinapariscarmen novelstochasticmultiscalemodeloffrancisellatularensisinfectiontopredictriskofinfectioninalaboratory