Cargando…
A robust gene regulatory network inference method base on Kalman filter and linear regression
The reconstruction of the topology of gene regulatory networks (GRNs) using high throughput genomic data such as microarray gene expression data is an important problem in systems biology. The main challenge in gene expression data is the high number of genes and low number of samples; also the data...
Autores principales: | Pirgazi, Jamshid, Khanteymoori, Ali Reza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044105/ https://www.ncbi.nlm.nih.gov/pubmed/30001352 http://dx.doi.org/10.1371/journal.pone.0200094 |
Ejemplares similares
-
Parallel Algorithms for Inferring Gene Regulatory Networks: A Review
por: Abbaszadeh, Omid, et al.
Publicado: (2018) -
Kalman Filtering for Genetic Regulatory Networks with Missing Values
por: Lin, Qiongbin, et al.
Publicado: (2017) -
RCOVID19: Recurrence-based SARS-CoV-2 features using chaos game representation
por: Olyaee, Mohammad Hossein, et al.
Publicado: (2020) -
Inference of Gene Regulatory Networks from Genetic Perturbations with Linear Regression Model
por: Dong, Zijian, et al.
Publicado: (2013) -
Auto Regressive Moving Average (ARMA) Modeling Method for Gyro Random Noise Using a Robust Kalman Filter
por: Huang, Lei
Publicado: (2015)