Cargando…
Synthetic DNA-Binding Inhibitor of HES1 Alters the Notch Signaling Pathway and Induces Neuronal Differentiation
[Image: see text] Synthetic DNA-binding inhibitors capable of gaining precise control over neurogenesis factors could obviate the current clinical barriers associated with the use of small molecules in regenerative medicine. Here, we report the design and bioefficacy of the synthetic ligand PIP-RBPJ...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045482/ https://www.ncbi.nlm.nih.gov/pubmed/30023873 http://dx.doi.org/10.1021/acsomega.8b00220 |
Sumario: | [Image: see text] Synthetic DNA-binding inhibitors capable of gaining precise control over neurogenesis factors could obviate the current clinical barriers associated with the use of small molecules in regenerative medicine. Here, we report the design and bioefficacy of the synthetic ligand PIP-RBPJ-1, which caused promoter-specific suppression of neurogenesis-associated HES1 and its downstream genes. Furthermore, PIP-RBPJ-1 alone altered the neural-system-associated Notch-signaling factors and remarkably induced neurogenesis with an efficiency that was comparable to that of a conventional approach. |
---|