Cargando…

Pyruvate carboxylase supports the pulmonary tropism of metastatic breast cancer

BACKGROUND: Overcoming systemic dormancy and initiating secondary tumor grow under unique microenvironmental conditions is a major rate-limiting step in metastatic progression. Disseminated tumor cells encounter major changes in nutrient supplies and oxidative stresses compared to the primary tumor...

Descripción completa

Detalles Bibliográficos
Autores principales: Shinde, Aparna, Wilmanski, Tomasz, Chen, Hao, Teegarden, Dorothy, Wendt, Michael K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045837/
https://www.ncbi.nlm.nih.gov/pubmed/30005601
http://dx.doi.org/10.1186/s13058-018-1008-9
_version_ 1783339734035070976
author Shinde, Aparna
Wilmanski, Tomasz
Chen, Hao
Teegarden, Dorothy
Wendt, Michael K.
author_facet Shinde, Aparna
Wilmanski, Tomasz
Chen, Hao
Teegarden, Dorothy
Wendt, Michael K.
author_sort Shinde, Aparna
collection PubMed
description BACKGROUND: Overcoming systemic dormancy and initiating secondary tumor grow under unique microenvironmental conditions is a major rate-limiting step in metastatic progression. Disseminated tumor cells encounter major changes in nutrient supplies and oxidative stresses compared to the primary tumor and must demonstrate significant metabolic plasticity to adapt to specific metastatic sites. Recent studies suggest that differential utilization of pyruvate sits as a critical node in determining the organotropism of metastatic breast cancer. Pyruvate carboxylase (PC) is key enzyme that converts pyruvate into oxaloacetate for utilization in gluconeogenesis and replenishment of the TCA cycle. METHODS: Patient survival was analyzed with respect to gene copy number alterations and differential mRNA expression levels of PC. Expression of PC was analyzed in the MCF-10A, D2-HAN and the 4 T1 breast cancer progression series under in vitro and in vivo growth conditions. PC expression was depleted via shRNAs and the impact on in vitro cell growth, mammary fat pad tumor growth, and pulmonary and non-pulmonary metastasis was assessed by bioluminescent imaging. Changes in glycolytic capacity, oxygen consumption, and response to oxidative stress were quantified upon PC depletion. RESULTS: Genomic copy number increases in PC were observed in 16–30% of metastatic breast cancer patients. High expression of PC mRNA was associated with decreased patient survival in the MCTI and METABRIC patient datasets. Enhanced expression of PC was not recapitulated in breast cancer progression models when analyzed under glucose-rich in vitro culture conditions. In contrast, PC expression was dramatically enhanced upon glucose deprivation and in vivo in pulmonary metastases. Depletion of PC led to a dramatic decrease in 4 T1 pulmonary metastasis, but did not affect orthotopic primary tumor growth. Tail vein inoculations confirmed the role of PC in facilitating pulmonary, but not extrapulmonary tumor initiation. PC-depleted cells demonstrated a decrease in glycolytic capacity and oxygen consumption rates and an enhanced sensitivity to oxidative stress. CONCLUSIONS: Our studies indicate that PC is specifically required for the growth of breast cancer that has disseminated to the lungs. Overall, these findings point to the potential of targeting PC for the treatment of pulmonary metastatic breast cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13058-018-1008-9) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6045837
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-60458372018-07-16 Pyruvate carboxylase supports the pulmonary tropism of metastatic breast cancer Shinde, Aparna Wilmanski, Tomasz Chen, Hao Teegarden, Dorothy Wendt, Michael K. Breast Cancer Res Research Article BACKGROUND: Overcoming systemic dormancy and initiating secondary tumor grow under unique microenvironmental conditions is a major rate-limiting step in metastatic progression. Disseminated tumor cells encounter major changes in nutrient supplies and oxidative stresses compared to the primary tumor and must demonstrate significant metabolic plasticity to adapt to specific metastatic sites. Recent studies suggest that differential utilization of pyruvate sits as a critical node in determining the organotropism of metastatic breast cancer. Pyruvate carboxylase (PC) is key enzyme that converts pyruvate into oxaloacetate for utilization in gluconeogenesis and replenishment of the TCA cycle. METHODS: Patient survival was analyzed with respect to gene copy number alterations and differential mRNA expression levels of PC. Expression of PC was analyzed in the MCF-10A, D2-HAN and the 4 T1 breast cancer progression series under in vitro and in vivo growth conditions. PC expression was depleted via shRNAs and the impact on in vitro cell growth, mammary fat pad tumor growth, and pulmonary and non-pulmonary metastasis was assessed by bioluminescent imaging. Changes in glycolytic capacity, oxygen consumption, and response to oxidative stress were quantified upon PC depletion. RESULTS: Genomic copy number increases in PC were observed in 16–30% of metastatic breast cancer patients. High expression of PC mRNA was associated with decreased patient survival in the MCTI and METABRIC patient datasets. Enhanced expression of PC was not recapitulated in breast cancer progression models when analyzed under glucose-rich in vitro culture conditions. In contrast, PC expression was dramatically enhanced upon glucose deprivation and in vivo in pulmonary metastases. Depletion of PC led to a dramatic decrease in 4 T1 pulmonary metastasis, but did not affect orthotopic primary tumor growth. Tail vein inoculations confirmed the role of PC in facilitating pulmonary, but not extrapulmonary tumor initiation. PC-depleted cells demonstrated a decrease in glycolytic capacity and oxygen consumption rates and an enhanced sensitivity to oxidative stress. CONCLUSIONS: Our studies indicate that PC is specifically required for the growth of breast cancer that has disseminated to the lungs. Overall, these findings point to the potential of targeting PC for the treatment of pulmonary metastatic breast cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13058-018-1008-9) contains supplementary material, which is available to authorized users. BioMed Central 2018-07-13 2018 /pmc/articles/PMC6045837/ /pubmed/30005601 http://dx.doi.org/10.1186/s13058-018-1008-9 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Shinde, Aparna
Wilmanski, Tomasz
Chen, Hao
Teegarden, Dorothy
Wendt, Michael K.
Pyruvate carboxylase supports the pulmonary tropism of metastatic breast cancer
title Pyruvate carboxylase supports the pulmonary tropism of metastatic breast cancer
title_full Pyruvate carboxylase supports the pulmonary tropism of metastatic breast cancer
title_fullStr Pyruvate carboxylase supports the pulmonary tropism of metastatic breast cancer
title_full_unstemmed Pyruvate carboxylase supports the pulmonary tropism of metastatic breast cancer
title_short Pyruvate carboxylase supports the pulmonary tropism of metastatic breast cancer
title_sort pyruvate carboxylase supports the pulmonary tropism of metastatic breast cancer
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045837/
https://www.ncbi.nlm.nih.gov/pubmed/30005601
http://dx.doi.org/10.1186/s13058-018-1008-9
work_keys_str_mv AT shindeaparna pyruvatecarboxylasesupportsthepulmonarytropismofmetastaticbreastcancer
AT wilmanskitomasz pyruvatecarboxylasesupportsthepulmonarytropismofmetastaticbreastcancer
AT chenhao pyruvatecarboxylasesupportsthepulmonarytropismofmetastaticbreastcancer
AT teegardendorothy pyruvatecarboxylasesupportsthepulmonarytropismofmetastaticbreastcancer
AT wendtmichaelk pyruvatecarboxylasesupportsthepulmonarytropismofmetastaticbreastcancer