Cargando…
Lead Induces Genotoxicity via Oxidative Stress and Promoter Methylation of DNA Repair Genes in Human Lymphoblastoid TK6 Cells
BACKGROUND: Lead (Pb) is a widely used metal in modern industry and is regarded as a health hazard. Although lead-induced genotoxicity has been confirmed, the direct evidence that lead induces genotoxicity in human cells and its related mechanisms has not been fully elucidated. In this study, for th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045917/ https://www.ncbi.nlm.nih.gov/pubmed/29933360 http://dx.doi.org/10.12659/MSM.908425 |
_version_ | 1783339752254078976 |
---|---|
author | Liu, Xiangquan Wu, Jingying Shi, Wenyan Shi, Wenhua Liu, Hekun Wu, Xiaonan |
author_facet | Liu, Xiangquan Wu, Jingying Shi, Wenyan Shi, Wenhua Liu, Hekun Wu, Xiaonan |
author_sort | Liu, Xiangquan |
collection | PubMed |
description | BACKGROUND: Lead (Pb) is a widely used metal in modern industry and is regarded as a health hazard. Although lead-induced genotoxicity has been confirmed, the direct evidence that lead induces genotoxicity in human cells and its related mechanisms has not been fully elucidated. In this study, for the first time, we evaluated the genotoxicity induced by lead in human lymphoblastoid TK6 cells. MATERIAL/METHODS: The TK6 cells were incubated with various concentrations of Pb(Ac)(2) for 6 h, 12 h, or 24 h. Cell viability was detected by CCK8 assay. Various biochemical markers were assessed by specific kits. Immunofluorescence assay was used to detect γ-H2AX foci formation. The promoter methylation was assessed by methylation-specific PCR. The protein levels were determined by Western blot assay. RESULTS: The results showed that after exposure to lead, cell viability was obviously decreased and γ-H2AX foci formation was significantly enhanced in TK6 cells. Moreover, the levels of 8-OHdG, ROS, MDA, and GSSG were increased, while the GSH level and SOD activity were decreased in lead-treated TK6 cells. The activation of the Nrf2-ARE signaling pathway was involved in lead-induced oxidative stress in TK6 cells. Finally, the expressions of DNA repair genes XRCC1, hOGG-1, BRCA1, and XPD were inhibited via enhancing their promoter methylation in TK6 cells after exposure to lead. CONCLUSIONS: Taken together, our study provides the first published evidence that lead exposure results in DNA damage via promoting oxidative stress and the promoter methylation of DNA repair genes in human lymphoblastoid TK6 cells. |
format | Online Article Text |
id | pubmed-6045917 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | International Scientific Literature, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-60459172018-07-17 Lead Induces Genotoxicity via Oxidative Stress and Promoter Methylation of DNA Repair Genes in Human Lymphoblastoid TK6 Cells Liu, Xiangquan Wu, Jingying Shi, Wenyan Shi, Wenhua Liu, Hekun Wu, Xiaonan Med Sci Monit Lab/In Vitro Research BACKGROUND: Lead (Pb) is a widely used metal in modern industry and is regarded as a health hazard. Although lead-induced genotoxicity has been confirmed, the direct evidence that lead induces genotoxicity in human cells and its related mechanisms has not been fully elucidated. In this study, for the first time, we evaluated the genotoxicity induced by lead in human lymphoblastoid TK6 cells. MATERIAL/METHODS: The TK6 cells were incubated with various concentrations of Pb(Ac)(2) for 6 h, 12 h, or 24 h. Cell viability was detected by CCK8 assay. Various biochemical markers were assessed by specific kits. Immunofluorescence assay was used to detect γ-H2AX foci formation. The promoter methylation was assessed by methylation-specific PCR. The protein levels were determined by Western blot assay. RESULTS: The results showed that after exposure to lead, cell viability was obviously decreased and γ-H2AX foci formation was significantly enhanced in TK6 cells. Moreover, the levels of 8-OHdG, ROS, MDA, and GSSG were increased, while the GSH level and SOD activity were decreased in lead-treated TK6 cells. The activation of the Nrf2-ARE signaling pathway was involved in lead-induced oxidative stress in TK6 cells. Finally, the expressions of DNA repair genes XRCC1, hOGG-1, BRCA1, and XPD were inhibited via enhancing their promoter methylation in TK6 cells after exposure to lead. CONCLUSIONS: Taken together, our study provides the first published evidence that lead exposure results in DNA damage via promoting oxidative stress and the promoter methylation of DNA repair genes in human lymphoblastoid TK6 cells. International Scientific Literature, Inc. 2018-06-22 /pmc/articles/PMC6045917/ /pubmed/29933360 http://dx.doi.org/10.12659/MSM.908425 Text en © Med Sci Monit, 2018 This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) ) |
spellingShingle | Lab/In Vitro Research Liu, Xiangquan Wu, Jingying Shi, Wenyan Shi, Wenhua Liu, Hekun Wu, Xiaonan Lead Induces Genotoxicity via Oxidative Stress and Promoter Methylation of DNA Repair Genes in Human Lymphoblastoid TK6 Cells |
title | Lead Induces Genotoxicity via Oxidative Stress and Promoter Methylation of DNA Repair Genes in Human Lymphoblastoid TK6 Cells |
title_full | Lead Induces Genotoxicity via Oxidative Stress and Promoter Methylation of DNA Repair Genes in Human Lymphoblastoid TK6 Cells |
title_fullStr | Lead Induces Genotoxicity via Oxidative Stress and Promoter Methylation of DNA Repair Genes in Human Lymphoblastoid TK6 Cells |
title_full_unstemmed | Lead Induces Genotoxicity via Oxidative Stress and Promoter Methylation of DNA Repair Genes in Human Lymphoblastoid TK6 Cells |
title_short | Lead Induces Genotoxicity via Oxidative Stress and Promoter Methylation of DNA Repair Genes in Human Lymphoblastoid TK6 Cells |
title_sort | lead induces genotoxicity via oxidative stress and promoter methylation of dna repair genes in human lymphoblastoid tk6 cells |
topic | Lab/In Vitro Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6045917/ https://www.ncbi.nlm.nih.gov/pubmed/29933360 http://dx.doi.org/10.12659/MSM.908425 |
work_keys_str_mv | AT liuxiangquan leadinducesgenotoxicityviaoxidativestressandpromotermethylationofdnarepairgenesinhumanlymphoblastoidtk6cells AT wujingying leadinducesgenotoxicityviaoxidativestressandpromotermethylationofdnarepairgenesinhumanlymphoblastoidtk6cells AT shiwenyan leadinducesgenotoxicityviaoxidativestressandpromotermethylationofdnarepairgenesinhumanlymphoblastoidtk6cells AT shiwenhua leadinducesgenotoxicityviaoxidativestressandpromotermethylationofdnarepairgenesinhumanlymphoblastoidtk6cells AT liuhekun leadinducesgenotoxicityviaoxidativestressandpromotermethylationofdnarepairgenesinhumanlymphoblastoidtk6cells AT wuxiaonan leadinducesgenotoxicityviaoxidativestressandpromotermethylationofdnarepairgenesinhumanlymphoblastoidtk6cells |