Cargando…
Inactivation of hepatic ATRX in Atrx Foxg1cre mice prevents reversal of aging-like phenotypes by thyroxine
ATRX is an ATP-dependent chromatin remodeler required for the maintenance of genomic integrity. We previously reported that conditional Atrx ablation in the mouse embryonic forebrain and anterior pituitary using the Foxg1cre driver causes reduced health and lifespan. In these mice, premature aging-l...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6046231/ https://www.ncbi.nlm.nih.gov/pubmed/29883366 http://dx.doi.org/10.18632/aging.101462 |
_version_ | 1783339793625645056 |
---|---|
author | Rowland, Megan E. Jiang, Yan Beier, Frank Bérubé, Nathalie G. |
author_facet | Rowland, Megan E. Jiang, Yan Beier, Frank Bérubé, Nathalie G. |
author_sort | Rowland, Megan E. |
collection | PubMed |
description | ATRX is an ATP-dependent chromatin remodeler required for the maintenance of genomic integrity. We previously reported that conditional Atrx ablation in the mouse embryonic forebrain and anterior pituitary using the Foxg1cre driver causes reduced health and lifespan. In these mice, premature aging-like phenotypes were accompanied by low circulating levels of insulin-like growth factor 1 (IGF-1) and thyroxine (T4), hormones that maintain stem cell pools and normal metabolic profiles, respectively. Based on emerging evidence that T4 stimulates expression of IGF-1 in pre-pubertal mice, we tested whether T4 supplementation in Atrx Foxg1cre mice could restore IGF-1 levels and ameliorate premature aging-like phenotypes. Despite restoration of normal serum T4 levels, we did not observe improvements in circulating IGF-1. In the liver, thyroid hormone target genes were differentially affected upon T4 treatment, with Igf1 and several other thyroid hormone responsive genes failing to recover normal expression levels. These findings hinted at Cre-mediated Atrx inactivation in the liver of Atrx Foxg1cre mice, which we confirmed. We conclude that the phenotypes observed in the Atrx Foxg1cre mice can be explained in part by a role of ATRX in the liver to promote T4-mediated Igf1 expression, thus explaining the inefficacy of T4 therapy observed in this study. |
format | Online Article Text |
id | pubmed-6046231 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Impact Journals |
record_format | MEDLINE/PubMed |
spelling | pubmed-60462312018-07-17 Inactivation of hepatic ATRX in Atrx Foxg1cre mice prevents reversal of aging-like phenotypes by thyroxine Rowland, Megan E. Jiang, Yan Beier, Frank Bérubé, Nathalie G. Aging (Albany NY) Research Paper ATRX is an ATP-dependent chromatin remodeler required for the maintenance of genomic integrity. We previously reported that conditional Atrx ablation in the mouse embryonic forebrain and anterior pituitary using the Foxg1cre driver causes reduced health and lifespan. In these mice, premature aging-like phenotypes were accompanied by low circulating levels of insulin-like growth factor 1 (IGF-1) and thyroxine (T4), hormones that maintain stem cell pools and normal metabolic profiles, respectively. Based on emerging evidence that T4 stimulates expression of IGF-1 in pre-pubertal mice, we tested whether T4 supplementation in Atrx Foxg1cre mice could restore IGF-1 levels and ameliorate premature aging-like phenotypes. Despite restoration of normal serum T4 levels, we did not observe improvements in circulating IGF-1. In the liver, thyroid hormone target genes were differentially affected upon T4 treatment, with Igf1 and several other thyroid hormone responsive genes failing to recover normal expression levels. These findings hinted at Cre-mediated Atrx inactivation in the liver of Atrx Foxg1cre mice, which we confirmed. We conclude that the phenotypes observed in the Atrx Foxg1cre mice can be explained in part by a role of ATRX in the liver to promote T4-mediated Igf1 expression, thus explaining the inefficacy of T4 therapy observed in this study. Impact Journals 2018-06-07 /pmc/articles/PMC6046231/ /pubmed/29883366 http://dx.doi.org/10.18632/aging.101462 Text en Copyright © 2018 Rowland et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY) 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Paper Rowland, Megan E. Jiang, Yan Beier, Frank Bérubé, Nathalie G. Inactivation of hepatic ATRX in Atrx Foxg1cre mice prevents reversal of aging-like phenotypes by thyroxine |
title | Inactivation of hepatic ATRX in Atrx Foxg1cre mice prevents reversal of aging-like phenotypes by thyroxine |
title_full | Inactivation of hepatic ATRX in Atrx Foxg1cre mice prevents reversal of aging-like phenotypes by thyroxine |
title_fullStr | Inactivation of hepatic ATRX in Atrx Foxg1cre mice prevents reversal of aging-like phenotypes by thyroxine |
title_full_unstemmed | Inactivation of hepatic ATRX in Atrx Foxg1cre mice prevents reversal of aging-like phenotypes by thyroxine |
title_short | Inactivation of hepatic ATRX in Atrx Foxg1cre mice prevents reversal of aging-like phenotypes by thyroxine |
title_sort | inactivation of hepatic atrx in atrx foxg1cre mice prevents reversal of aging-like phenotypes by thyroxine |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6046231/ https://www.ncbi.nlm.nih.gov/pubmed/29883366 http://dx.doi.org/10.18632/aging.101462 |
work_keys_str_mv | AT rowlandmegane inactivationofhepaticatrxinatrxfoxg1cremicepreventsreversalofaginglikephenotypesbythyroxine AT jiangyan inactivationofhepaticatrxinatrxfoxg1cremicepreventsreversalofaginglikephenotypesbythyroxine AT beierfrank inactivationofhepaticatrxinatrxfoxg1cremicepreventsreversalofaginglikephenotypesbythyroxine AT berubenathalieg inactivationofhepaticatrxinatrxfoxg1cremicepreventsreversalofaginglikephenotypesbythyroxine |