Cargando…

Leucine-rich G Protein-coupled Receptor-5 Is Significantly Increased in the Aqueous Humor of Human Eye with Proliferative Diabetic Retinopathy

Leucine-rich G protein-coupled receptor-5 (LGR5) is known to be a stem cell marker in many organs. LGR5 may have important roles in proliferative diabetic retinopathy (PDR) because LGR5 potentiate the Wnt/β-catenin pathway, which plays crucial roles in pathologic neovascularization in the retina. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Eun Hee, Hwang, Mina, Shin, Yong Un, Park, Hyun-Hee, Koh, Seong-Ho, Cho, Heeyoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society for Brain and Neural Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050418/
https://www.ncbi.nlm.nih.gov/pubmed/30022875
http://dx.doi.org/10.5607/en.2018.27.3.238
Descripción
Sumario:Leucine-rich G protein-coupled receptor-5 (LGR5) is known to be a stem cell marker in many organs. LGR5 may have important roles in proliferative diabetic retinopathy (PDR) because LGR5 potentiate the Wnt/β-catenin pathway, which plays crucial roles in pathologic neovascularization in the retina. The association between LGR5 and retinal pathologic neovascularization has not yet been reported. In the present study, LGR5 was compared in human aqueous humor (AH) between normal control and patients with PDR to confirm the relationship between LGR5 and PDR. AH was collected from 7 naïve PDR patients and 3 control subjects before intravitreal injection and cataract surgery, respectively. LGR5 and key members of Wnt/β-catenin were assessed by western blotting. In the present study, it was confirmed for the first time that LGR5 is detected in AH and it increases in PDR patients. Key members of Wnt/β-catenin pathway were also increased in AH of PDR patients compared to control. These findings might support the hypothesis that LGR5 has important roles in PDR especially considering the roles of the Wnt/β-catenin pathway, which is activated by LGR5, contributing to retinal pathologic neovascularization.