Cargando…
Myocyte-specific overexpressing HDAC4 promotes myocardial ischemia/reperfusion injury
BACKGROUND: Histone deacetylases (HDACs) play a critical role in modulating myocardial protection and cardiomyocyte survivals. However, Specific HDAC isoforms in mediating myocardial ischemia/reperfusion injury remain currently unknown. We used cardiomyocyte-specific overexpression of active HDAC4 t...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050730/ https://www.ncbi.nlm.nih.gov/pubmed/30134825 http://dx.doi.org/10.1186/s10020-018-0037-2 |
Sumario: | BACKGROUND: Histone deacetylases (HDACs) play a critical role in modulating myocardial protection and cardiomyocyte survivals. However, Specific HDAC isoforms in mediating myocardial ischemia/reperfusion injury remain currently unknown. We used cardiomyocyte-specific overexpression of active HDAC4 to determine the functional role of activated HDAC4 in regulating myocardial ischemia and reperfusion in isovolumetric perfused hearts. METHODS: In this study, we created myocyte-specific active HDAC4 transgenic mice to examine the functional role of active HDAC4 in mediating myocardial I/R injury. Ventricular function was determined in the isovolumetric heart, and infarct size was determined using tetrazolium chloride staining. RESULTS: Myocyte-specific overexpressing activated HDAC4 in mice promoted myocardial I/R injury, as indicated by the increases in infarct size and reduction of ventricular functional recovery following I/R injury. Notably, active HDAC4 overexpression led to an increase in LC-3 and active caspase 3 and decrease in SOD-1 in myocardium. Delivery of chemical HDAC inhibitor attenuated the detrimental effects of active HDAC4 on I/R injury, revealing the pivotal role of active HDAC4 in response to myocardial I/R injury. CONCLUSIONS: Taken together, these findings are the first to define that activated HDAC4 as a crucial regulator for myocardial ischemia and reperfusion injury. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s10020-018-0037-2) contains supplementary material, which is available to authorized users. |
---|