Cargando…
Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging
Inability to preserve proteostasis with age contributes to the gradual loss of function that characterizes old organisms. Defective autophagy, a component of the proteostasis network for delivery and degradation of intracellular materials in lysosomes, has been described in multiple old organisms, w...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052466/ https://www.ncbi.nlm.nih.gov/pubmed/29845728 http://dx.doi.org/10.1111/acel.12777 |
_version_ | 1783340657588305920 |
---|---|
author | Bejarano, Eloy Murray, John W. Wang, Xintao Pampliega, Olatz Yin, David Patel, Bindi Yuste, Andrea Wolkoff, Allan W. Cuervo, Ana Maria |
author_facet | Bejarano, Eloy Murray, John W. Wang, Xintao Pampliega, Olatz Yin, David Patel, Bindi Yuste, Andrea Wolkoff, Allan W. Cuervo, Ana Maria |
author_sort | Bejarano, Eloy |
collection | PubMed |
description | Inability to preserve proteostasis with age contributes to the gradual loss of function that characterizes old organisms. Defective autophagy, a component of the proteostasis network for delivery and degradation of intracellular materials in lysosomes, has been described in multiple old organisms, while a robust autophagy response has been linked to longevity. The molecular mechanisms responsible for defective autophagic function with age remain, for the most part, poorly characterized. In this work, we have identified differences between young and old cells in the intracellular trafficking of the vesicular compartments that participate in autophagy. Failure to reposition autophagosomes and lysosomes toward the perinuclear region with age reduces the efficiency of their fusion and the subsequent degradation of the sequestered cargo. Hepatocytes from old mice display lower association of two microtubule‐based minus‐end‐directed motor proteins, the well‐characterized dynein, and the less‐studied KIFC3, with autophagosomes and lysosomes, respectively. Using genetic approaches to mimic the lower levels of KIFC3 observed in old cells, we confirmed that reduced content of this motor protein in fibroblasts leads to failed lysosomal repositioning and diminished autophagic flux. Our study connects defects in intracellular trafficking with insufficient autophagy in old organisms and identifies motor proteins as a novel target for future interventions aiming at correcting autophagic activity with anti‐aging purposes. |
format | Online Article Text |
id | pubmed-6052466 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-60524662018-08-01 Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging Bejarano, Eloy Murray, John W. Wang, Xintao Pampliega, Olatz Yin, David Patel, Bindi Yuste, Andrea Wolkoff, Allan W. Cuervo, Ana Maria Aging Cell Original Articles Inability to preserve proteostasis with age contributes to the gradual loss of function that characterizes old organisms. Defective autophagy, a component of the proteostasis network for delivery and degradation of intracellular materials in lysosomes, has been described in multiple old organisms, while a robust autophagy response has been linked to longevity. The molecular mechanisms responsible for defective autophagic function with age remain, for the most part, poorly characterized. In this work, we have identified differences between young and old cells in the intracellular trafficking of the vesicular compartments that participate in autophagy. Failure to reposition autophagosomes and lysosomes toward the perinuclear region with age reduces the efficiency of their fusion and the subsequent degradation of the sequestered cargo. Hepatocytes from old mice display lower association of two microtubule‐based minus‐end‐directed motor proteins, the well‐characterized dynein, and the less‐studied KIFC3, with autophagosomes and lysosomes, respectively. Using genetic approaches to mimic the lower levels of KIFC3 observed in old cells, we confirmed that reduced content of this motor protein in fibroblasts leads to failed lysosomal repositioning and diminished autophagic flux. Our study connects defects in intracellular trafficking with insufficient autophagy in old organisms and identifies motor proteins as a novel target for future interventions aiming at correcting autophagic activity with anti‐aging purposes. John Wiley and Sons Inc. 2018-05-29 2018-08 /pmc/articles/PMC6052466/ /pubmed/29845728 http://dx.doi.org/10.1111/acel.12777 Text en © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Bejarano, Eloy Murray, John W. Wang, Xintao Pampliega, Olatz Yin, David Patel, Bindi Yuste, Andrea Wolkoff, Allan W. Cuervo, Ana Maria Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging |
title | Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging |
title_full | Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging |
title_fullStr | Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging |
title_full_unstemmed | Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging |
title_short | Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging |
title_sort | defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052466/ https://www.ncbi.nlm.nih.gov/pubmed/29845728 http://dx.doi.org/10.1111/acel.12777 |
work_keys_str_mv | AT bejaranoeloy defectiverecruitmentofmotorproteinstoautophagiccompartmentscontributestoautophagicfailureinaging AT murrayjohnw defectiverecruitmentofmotorproteinstoautophagiccompartmentscontributestoautophagicfailureinaging AT wangxintao defectiverecruitmentofmotorproteinstoautophagiccompartmentscontributestoautophagicfailureinaging AT pampliegaolatz defectiverecruitmentofmotorproteinstoautophagiccompartmentscontributestoautophagicfailureinaging AT yindavid defectiverecruitmentofmotorproteinstoautophagiccompartmentscontributestoautophagicfailureinaging AT patelbindi defectiverecruitmentofmotorproteinstoautophagiccompartmentscontributestoautophagicfailureinaging AT yusteandrea defectiverecruitmentofmotorproteinstoautophagiccompartmentscontributestoautophagicfailureinaging AT wolkoffallanw defectiverecruitmentofmotorproteinstoautophagiccompartmentscontributestoautophagicfailureinaging AT cuervoanamaria defectiverecruitmentofmotorproteinstoautophagiccompartmentscontributestoautophagicfailureinaging |