Cargando…

Selective acceleration of disfavored enolate addition reactions by anion–π interactions

In chemistry and biology, cation–π interactions contribute significantly to many important transformations. In sharp contrast, reactions accomplished with support from the complementary anion–π interactions are essentially unknown. In this report, we show that anion–π interactions can determine the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yingjie, Benz, Sebastian, Sakai, Naomi, Matile, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054047/
https://www.ncbi.nlm.nih.gov/pubmed/30090238
http://dx.doi.org/10.1039/c5sc02563j
Descripción
Sumario:In chemistry and biology, cation–π interactions contribute significantly to many important transformations. In sharp contrast, reactions accomplished with support from the complementary anion–π interactions are essentially unknown. In this report, we show that anion–π interactions can determine the selectivity of the enolate chemistry of malonate half thioesters. Their addition to enolate acceptors is central in natural product biosynthesis but fails without enzymes because non-productive decarboxylation dominates. The newly designed and synthesized anion–π tweezers invert this selectivity by accelerating the disfavored and decelerating the favored process. The discrimination of anionic tautomers of different planarization and charge delocalization on π-acidic surfaces is expected to account for this intriguing “tortoise-and-hare catalysis.” Almost exponentially increasing selectivity with increasing π acidity of the catalyst supports that contributions from anion–π interactions are decisive.