Cargando…

Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity

Autophagy, a stress-induced lysosomal degradative pathway, has been assumed to exert similar metabolic effects in different organs. Here, we establish a model where autophagy plays different roles in insulin-producing β cells versus insulin-responsive cells, utilizing knockin (Becn1(F121A)) mice man...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamamoto, Soh, Kuramoto, Kenta, Wang, Nan, Situ, Xiaolei, Priyadarshini, Medha, Zhang, Weiran, Cordoba-Chacon, Jose, Layden, Brian T., He, Congcong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054876/
https://www.ncbi.nlm.nih.gov/pubmed/29898399
http://dx.doi.org/10.1016/j.celrep.2018.05.032
_version_ 1783341076956839936
author Yamamoto, Soh
Kuramoto, Kenta
Wang, Nan
Situ, Xiaolei
Priyadarshini, Medha
Zhang, Weiran
Cordoba-Chacon, Jose
Layden, Brian T.
He, Congcong
author_facet Yamamoto, Soh
Kuramoto, Kenta
Wang, Nan
Situ, Xiaolei
Priyadarshini, Medha
Zhang, Weiran
Cordoba-Chacon, Jose
Layden, Brian T.
He, Congcong
author_sort Yamamoto, Soh
collection PubMed
description Autophagy, a stress-induced lysosomal degradative pathway, has been assumed to exert similar metabolic effects in different organs. Here, we establish a model where autophagy plays different roles in insulin-producing β cells versus insulin-responsive cells, utilizing knockin (Becn1(F121A)) mice manifesting constitutively active autophagy. With a high-fat-diet challenge, the autophagy-hyperactive mice unexpectedly show impaired glucose tolerance, but improved insulin sensitivity, compared to mice with normal autophagy. Autophagy hyperactivation enhances insulin signaling, via suppressing ER stress in insulin-responsive cells, but decreases insulin secretion by selectively sequestrating and degrading insulin granule vesicles in β cells, a process we term “vesicophagy.” The reduction in insulin storage, insulin secretion, and glucose tolerance is reversed by transient treatment of autophagy inhibitors. Thus, β cells and insulin-responsive tissues require different autophagy levels for optimal function. To improve insulin sensitivity without hampering secretion, acute or intermittent, rather than chronic, activation of autophagy should be considered in diabetic therapy development.
format Online
Article
Text
id pubmed-6054876
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-60548762018-07-22 Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity Yamamoto, Soh Kuramoto, Kenta Wang, Nan Situ, Xiaolei Priyadarshini, Medha Zhang, Weiran Cordoba-Chacon, Jose Layden, Brian T. He, Congcong Cell Rep Article Autophagy, a stress-induced lysosomal degradative pathway, has been assumed to exert similar metabolic effects in different organs. Here, we establish a model where autophagy plays different roles in insulin-producing β cells versus insulin-responsive cells, utilizing knockin (Becn1(F121A)) mice manifesting constitutively active autophagy. With a high-fat-diet challenge, the autophagy-hyperactive mice unexpectedly show impaired glucose tolerance, but improved insulin sensitivity, compared to mice with normal autophagy. Autophagy hyperactivation enhances insulin signaling, via suppressing ER stress in insulin-responsive cells, but decreases insulin secretion by selectively sequestrating and degrading insulin granule vesicles in β cells, a process we term “vesicophagy.” The reduction in insulin storage, insulin secretion, and glucose tolerance is reversed by transient treatment of autophagy inhibitors. Thus, β cells and insulin-responsive tissues require different autophagy levels for optimal function. To improve insulin sensitivity without hampering secretion, acute or intermittent, rather than chronic, activation of autophagy should be considered in diabetic therapy development. 2018-06-12 /pmc/articles/PMC6054876/ /pubmed/29898399 http://dx.doi.org/10.1016/j.celrep.2018.05.032 Text en http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Yamamoto, Soh
Kuramoto, Kenta
Wang, Nan
Situ, Xiaolei
Priyadarshini, Medha
Zhang, Weiran
Cordoba-Chacon, Jose
Layden, Brian T.
He, Congcong
Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity
title Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity
title_full Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity
title_fullStr Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity
title_full_unstemmed Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity
title_short Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity
title_sort autophagy differentially regulates insulin production and insulin sensitivity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054876/
https://www.ncbi.nlm.nih.gov/pubmed/29898399
http://dx.doi.org/10.1016/j.celrep.2018.05.032
work_keys_str_mv AT yamamotosoh autophagydifferentiallyregulatesinsulinproductionandinsulinsensitivity
AT kuramotokenta autophagydifferentiallyregulatesinsulinproductionandinsulinsensitivity
AT wangnan autophagydifferentiallyregulatesinsulinproductionandinsulinsensitivity
AT situxiaolei autophagydifferentiallyregulatesinsulinproductionandinsulinsensitivity
AT priyadarshinimedha autophagydifferentiallyregulatesinsulinproductionandinsulinsensitivity
AT zhangweiran autophagydifferentiallyregulatesinsulinproductionandinsulinsensitivity
AT cordobachaconjose autophagydifferentiallyregulatesinsulinproductionandinsulinsensitivity
AT laydenbriant autophagydifferentiallyregulatesinsulinproductionandinsulinsensitivity
AT hecongcong autophagydifferentiallyregulatesinsulinproductionandinsulinsensitivity