Cargando…

Biocatalytic Conversion of Cyclic Ketones Bearing α‐Quaternary Stereocenters into Lactones in an Enantioselective Radical Approach to Medium‐Sized Carbocycles

Cyclic ketones bearing α‐quaternary stereocenters underwent efficient kinetic resolution using cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus. Lactones possessing tetrasubstituted stereocenters were obtained with high enantioselectivity (up to >99 % ee) and complete chemosele...

Descripción completa

Detalles Bibliográficos
Autores principales: Morrill, Charlotte, Jensen, Chantel, Just‐Baringo, Xavier, Grogan, Gideon, Turner, Nicholas J., Procter, David J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6055628/
https://www.ncbi.nlm.nih.gov/pubmed/29393988
http://dx.doi.org/10.1002/anie.201800121
Descripción
Sumario:Cyclic ketones bearing α‐quaternary stereocenters underwent efficient kinetic resolution using cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus. Lactones possessing tetrasubstituted stereocenters were obtained with high enantioselectivity (up to >99 % ee) and complete chemoselectivity. Preparative‐scale biotransformations were exploited in conjunction with a SmI(2)‐mediated cyclization process to access complex, enantiomerically enriched cycloheptan‐ and cycloctan‐1,4‐diols. In a parallel approach to structurally distinct products, enantiomerically enriched ketones from the resolution with an α‐quaternary stereocenter were used in a SmI(2)‐mediated cyclization process to give cyclobutanol products (up to >99 % ee).