Cargando…
Biocatalytic Conversion of Cyclic Ketones Bearing α‐Quaternary Stereocenters into Lactones in an Enantioselective Radical Approach to Medium‐Sized Carbocycles
Cyclic ketones bearing α‐quaternary stereocenters underwent efficient kinetic resolution using cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus. Lactones possessing tetrasubstituted stereocenters were obtained with high enantioselectivity (up to >99 % ee) and complete chemosele...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6055628/ https://www.ncbi.nlm.nih.gov/pubmed/29393988 http://dx.doi.org/10.1002/anie.201800121 |
Sumario: | Cyclic ketones bearing α‐quaternary stereocenters underwent efficient kinetic resolution using cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus. Lactones possessing tetrasubstituted stereocenters were obtained with high enantioselectivity (up to >99 % ee) and complete chemoselectivity. Preparative‐scale biotransformations were exploited in conjunction with a SmI(2)‐mediated cyclization process to access complex, enantiomerically enriched cycloheptan‐ and cycloctan‐1,4‐diols. In a parallel approach to structurally distinct products, enantiomerically enriched ketones from the resolution with an α‐quaternary stereocenter were used in a SmI(2)‐mediated cyclization process to give cyclobutanol products (up to >99 % ee). |
---|