Cargando…

Pulmonary delivery of influenza vaccine formulations in cotton rats: site of deposition plays a minor role in the protective efficacy against clinical isolate of H1N1pdm virus

Administration of influenza vaccines to the lungs could be an attractive alternative to conventional parenteral administration. In this study, we investigated the deposition site of pulmonary delivered liquid and powder influenza vaccine formulations and its relation to their immunogenicity and prot...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhide, Yoshita, Tomar, Jasmine, Dong, Wei, de Vries-Idema, Jacqueline, Frijlink, Henderik W., Huckriede, Anke, Hinrichs, Wouter L. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058687/
https://www.ncbi.nlm.nih.gov/pubmed/29451040
http://dx.doi.org/10.1080/10717544.2018.1435748
_version_ 1783341745183916032
author Bhide, Yoshita
Tomar, Jasmine
Dong, Wei
de Vries-Idema, Jacqueline
Frijlink, Henderik W.
Huckriede, Anke
Hinrichs, Wouter L. J.
author_facet Bhide, Yoshita
Tomar, Jasmine
Dong, Wei
de Vries-Idema, Jacqueline
Frijlink, Henderik W.
Huckriede, Anke
Hinrichs, Wouter L. J.
author_sort Bhide, Yoshita
collection PubMed
description Administration of influenza vaccines to the lungs could be an attractive alternative to conventional parenteral administration. In this study, we investigated the deposition site of pulmonary delivered liquid and powder influenza vaccine formulations and its relation to their immunogenicity and protective efficacy. In vivo deposition studies in cotton rats revealed that, the powder formulation was mainly deposited in the trachea ( ∼ 65%) whereas the liquid was homogenously distributed throughout the lungs ( ∼ 96%). In addition, only 60% of the antigen in the powder formulation was deposited in the respiratory tract with respect to the liquid formulation. Immunogenicity studies showed that pulmonary delivered liquid and powder influenza formulations induced robust systemic and mucosal immune responses (significantly higher by liquids than by powders). When challenged with a clinical isolate of homologous H1N1pdm virus, all animals pulmonary administered with placebo had detectable virus in their lungs one day post challenge. In contrast, none of the vaccinated animals had detectable lung virus titers, except for two out of eight animals from the powder immunized group. Also, pulmonary vaccinated animals showed no or little signs of infection like increase in breathing frequency or weight loss upon challenge as compared to animals from the negative control group. In conclusion, immune responses induced by liquid formulation were significantly higher than responses induced by powder formulation, but the overall protective efficacy of both formulations was comparable. Thus, pulmonary immunization is capable of inducing protective immunity and the site of antigen deposition seems to be of minor relevance in inducing protection.
format Online
Article
Text
id pubmed-6058687
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-60586872018-08-17 Pulmonary delivery of influenza vaccine formulations in cotton rats: site of deposition plays a minor role in the protective efficacy against clinical isolate of H1N1pdm virus Bhide, Yoshita Tomar, Jasmine Dong, Wei de Vries-Idema, Jacqueline Frijlink, Henderik W. Huckriede, Anke Hinrichs, Wouter L. J. Drug Deliv Research Article Administration of influenza vaccines to the lungs could be an attractive alternative to conventional parenteral administration. In this study, we investigated the deposition site of pulmonary delivered liquid and powder influenza vaccine formulations and its relation to their immunogenicity and protective efficacy. In vivo deposition studies in cotton rats revealed that, the powder formulation was mainly deposited in the trachea ( ∼ 65%) whereas the liquid was homogenously distributed throughout the lungs ( ∼ 96%). In addition, only 60% of the antigen in the powder formulation was deposited in the respiratory tract with respect to the liquid formulation. Immunogenicity studies showed that pulmonary delivered liquid and powder influenza formulations induced robust systemic and mucosal immune responses (significantly higher by liquids than by powders). When challenged with a clinical isolate of homologous H1N1pdm virus, all animals pulmonary administered with placebo had detectable virus in their lungs one day post challenge. In contrast, none of the vaccinated animals had detectable lung virus titers, except for two out of eight animals from the powder immunized group. Also, pulmonary vaccinated animals showed no or little signs of infection like increase in breathing frequency or weight loss upon challenge as compared to animals from the negative control group. In conclusion, immune responses induced by liquid formulation were significantly higher than responses induced by powder formulation, but the overall protective efficacy of both formulations was comparable. Thus, pulmonary immunization is capable of inducing protective immunity and the site of antigen deposition seems to be of minor relevance in inducing protection. Taylor & Francis 2018-02-16 /pmc/articles/PMC6058687/ /pubmed/29451040 http://dx.doi.org/10.1080/10717544.2018.1435748 Text en © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Bhide, Yoshita
Tomar, Jasmine
Dong, Wei
de Vries-Idema, Jacqueline
Frijlink, Henderik W.
Huckriede, Anke
Hinrichs, Wouter L. J.
Pulmonary delivery of influenza vaccine formulations in cotton rats: site of deposition plays a minor role in the protective efficacy against clinical isolate of H1N1pdm virus
title Pulmonary delivery of influenza vaccine formulations in cotton rats: site of deposition plays a minor role in the protective efficacy against clinical isolate of H1N1pdm virus
title_full Pulmonary delivery of influenza vaccine formulations in cotton rats: site of deposition plays a minor role in the protective efficacy against clinical isolate of H1N1pdm virus
title_fullStr Pulmonary delivery of influenza vaccine formulations in cotton rats: site of deposition plays a minor role in the protective efficacy against clinical isolate of H1N1pdm virus
title_full_unstemmed Pulmonary delivery of influenza vaccine formulations in cotton rats: site of deposition plays a minor role in the protective efficacy against clinical isolate of H1N1pdm virus
title_short Pulmonary delivery of influenza vaccine formulations in cotton rats: site of deposition plays a minor role in the protective efficacy against clinical isolate of H1N1pdm virus
title_sort pulmonary delivery of influenza vaccine formulations in cotton rats: site of deposition plays a minor role in the protective efficacy against clinical isolate of h1n1pdm virus
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058687/
https://www.ncbi.nlm.nih.gov/pubmed/29451040
http://dx.doi.org/10.1080/10717544.2018.1435748
work_keys_str_mv AT bhideyoshita pulmonarydeliveryofinfluenzavaccineformulationsincottonratssiteofdepositionplaysaminorroleintheprotectiveefficacyagainstclinicalisolateofh1n1pdmvirus
AT tomarjasmine pulmonarydeliveryofinfluenzavaccineformulationsincottonratssiteofdepositionplaysaminorroleintheprotectiveefficacyagainstclinicalisolateofh1n1pdmvirus
AT dongwei pulmonarydeliveryofinfluenzavaccineformulationsincottonratssiteofdepositionplaysaminorroleintheprotectiveefficacyagainstclinicalisolateofh1n1pdmvirus
AT devriesidemajacqueline pulmonarydeliveryofinfluenzavaccineformulationsincottonratssiteofdepositionplaysaminorroleintheprotectiveefficacyagainstclinicalisolateofh1n1pdmvirus
AT frijlinkhenderikw pulmonarydeliveryofinfluenzavaccineformulationsincottonratssiteofdepositionplaysaminorroleintheprotectiveefficacyagainstclinicalisolateofh1n1pdmvirus
AT huckriedeanke pulmonarydeliveryofinfluenzavaccineformulationsincottonratssiteofdepositionplaysaminorroleintheprotectiveefficacyagainstclinicalisolateofh1n1pdmvirus
AT hinrichswouterlj pulmonarydeliveryofinfluenzavaccineformulationsincottonratssiteofdepositionplaysaminorroleintheprotectiveefficacyagainstclinicalisolateofh1n1pdmvirus