Cargando…

A two-stage microbial association mapping framework with advanced FDR control

BACKGROUND: In microbiome studies, it is important to detect taxa which are associated with pathological outcomes at the lowest definable taxonomic rank, such as genus or species. Traditionally, taxa at the target rank are tested for individual association, followed by the Benjamini-Hochberg (BH) pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Jiyuan, Koh, Hyunwook, He, Linchen, Liu, Menghan, Blaser, Martin J., Li, Huilin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060480/
https://www.ncbi.nlm.nih.gov/pubmed/30045760
http://dx.doi.org/10.1186/s40168-018-0517-1
_version_ 1783342039146954752
author Hu, Jiyuan
Koh, Hyunwook
He, Linchen
Liu, Menghan
Blaser, Martin J.
Li, Huilin
author_facet Hu, Jiyuan
Koh, Hyunwook
He, Linchen
Liu, Menghan
Blaser, Martin J.
Li, Huilin
author_sort Hu, Jiyuan
collection PubMed
description BACKGROUND: In microbiome studies, it is important to detect taxa which are associated with pathological outcomes at the lowest definable taxonomic rank, such as genus or species. Traditionally, taxa at the target rank are tested for individual association, followed by the Benjamini-Hochberg (BH) procedure to control for false discovery rate (FDR). However, this approach neglects the dependence structure among taxa and may lead to conservative results. The taxonomic tree of microbiome data represents alignment from phylum to species rank and characterizes evolutionary relationships across microbial taxa. Taxa that are closer on the tree usually have similar responses to the exposure (environment). The statistical power in microbial association tests can be enhanced by efficiently employing the prior evolutionary information via the taxonomic tree. METHODS: We propose a two-stage microbial association mapping framework (massMap) which uses grouping information from the taxonomic tree to strengthen statistical power in association tests at the target rank. massMap first screens the association of taxonomic groups at a pre-selected higher taxonomic rank using a powerful microbial group test OMiAT. The method then proceeds to test the association for each candidate taxon at the target rank within the significant taxonomic groups identified in the first stage. Hierarchical BH (HBH) and selected subset testing (SST) procedures are evaluated to control the FDR for the two-stage structured tests. RESULTS: Our simulations show that massMap incorporating OMiAT and the advanced FDR controlling methodologies largely alleviates the multiplicity issue. It is statistically more powerful than the traditional association mapping directly at the target rank while controlling the FDR at desired levels under most scenarios. In our real data analyses, massMap detects more or the same amount of associated species with smaller adjusted p values compared to the traditional method, which further illustrates the efficiency of the proposed framework. The R package of massMap is publicly available at https://sites.google.com/site/huilinli09/software and https://github.com/JiyuanHu/. CONCLUSIONS: massMap is a novel microbial association mapping framework and achieves additional efficiency by utilizing the intrinsic taxonomic structure of microbiome data. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40168-018-0517-1) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6060480
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-60604802018-07-31 A two-stage microbial association mapping framework with advanced FDR control Hu, Jiyuan Koh, Hyunwook He, Linchen Liu, Menghan Blaser, Martin J. Li, Huilin Microbiome Methodology BACKGROUND: In microbiome studies, it is important to detect taxa which are associated with pathological outcomes at the lowest definable taxonomic rank, such as genus or species. Traditionally, taxa at the target rank are tested for individual association, followed by the Benjamini-Hochberg (BH) procedure to control for false discovery rate (FDR). However, this approach neglects the dependence structure among taxa and may lead to conservative results. The taxonomic tree of microbiome data represents alignment from phylum to species rank and characterizes evolutionary relationships across microbial taxa. Taxa that are closer on the tree usually have similar responses to the exposure (environment). The statistical power in microbial association tests can be enhanced by efficiently employing the prior evolutionary information via the taxonomic tree. METHODS: We propose a two-stage microbial association mapping framework (massMap) which uses grouping information from the taxonomic tree to strengthen statistical power in association tests at the target rank. massMap first screens the association of taxonomic groups at a pre-selected higher taxonomic rank using a powerful microbial group test OMiAT. The method then proceeds to test the association for each candidate taxon at the target rank within the significant taxonomic groups identified in the first stage. Hierarchical BH (HBH) and selected subset testing (SST) procedures are evaluated to control the FDR for the two-stage structured tests. RESULTS: Our simulations show that massMap incorporating OMiAT and the advanced FDR controlling methodologies largely alleviates the multiplicity issue. It is statistically more powerful than the traditional association mapping directly at the target rank while controlling the FDR at desired levels under most scenarios. In our real data analyses, massMap detects more or the same amount of associated species with smaller adjusted p values compared to the traditional method, which further illustrates the efficiency of the proposed framework. The R package of massMap is publicly available at https://sites.google.com/site/huilinli09/software and https://github.com/JiyuanHu/. CONCLUSIONS: massMap is a novel microbial association mapping framework and achieves additional efficiency by utilizing the intrinsic taxonomic structure of microbiome data. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40168-018-0517-1) contains supplementary material, which is available to authorized users. BioMed Central 2018-07-25 /pmc/articles/PMC6060480/ /pubmed/30045760 http://dx.doi.org/10.1186/s40168-018-0517-1 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Methodology
Hu, Jiyuan
Koh, Hyunwook
He, Linchen
Liu, Menghan
Blaser, Martin J.
Li, Huilin
A two-stage microbial association mapping framework with advanced FDR control
title A two-stage microbial association mapping framework with advanced FDR control
title_full A two-stage microbial association mapping framework with advanced FDR control
title_fullStr A two-stage microbial association mapping framework with advanced FDR control
title_full_unstemmed A two-stage microbial association mapping framework with advanced FDR control
title_short A two-stage microbial association mapping framework with advanced FDR control
title_sort two-stage microbial association mapping framework with advanced fdr control
topic Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060480/
https://www.ncbi.nlm.nih.gov/pubmed/30045760
http://dx.doi.org/10.1186/s40168-018-0517-1
work_keys_str_mv AT hujiyuan atwostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol
AT kohhyunwook atwostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol
AT helinchen atwostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol
AT liumenghan atwostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol
AT blasermartinj atwostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol
AT lihuilin atwostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol
AT hujiyuan twostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol
AT kohhyunwook twostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol
AT helinchen twostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol
AT liumenghan twostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol
AT blasermartinj twostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol
AT lihuilin twostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol