Cargando…
A two-stage microbial association mapping framework with advanced FDR control
BACKGROUND: In microbiome studies, it is important to detect taxa which are associated with pathological outcomes at the lowest definable taxonomic rank, such as genus or species. Traditionally, taxa at the target rank are tested for individual association, followed by the Benjamini-Hochberg (BH) pr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060480/ https://www.ncbi.nlm.nih.gov/pubmed/30045760 http://dx.doi.org/10.1186/s40168-018-0517-1 |
_version_ | 1783342039146954752 |
---|---|
author | Hu, Jiyuan Koh, Hyunwook He, Linchen Liu, Menghan Blaser, Martin J. Li, Huilin |
author_facet | Hu, Jiyuan Koh, Hyunwook He, Linchen Liu, Menghan Blaser, Martin J. Li, Huilin |
author_sort | Hu, Jiyuan |
collection | PubMed |
description | BACKGROUND: In microbiome studies, it is important to detect taxa which are associated with pathological outcomes at the lowest definable taxonomic rank, such as genus or species. Traditionally, taxa at the target rank are tested for individual association, followed by the Benjamini-Hochberg (BH) procedure to control for false discovery rate (FDR). However, this approach neglects the dependence structure among taxa and may lead to conservative results. The taxonomic tree of microbiome data represents alignment from phylum to species rank and characterizes evolutionary relationships across microbial taxa. Taxa that are closer on the tree usually have similar responses to the exposure (environment). The statistical power in microbial association tests can be enhanced by efficiently employing the prior evolutionary information via the taxonomic tree. METHODS: We propose a two-stage microbial association mapping framework (massMap) which uses grouping information from the taxonomic tree to strengthen statistical power in association tests at the target rank. massMap first screens the association of taxonomic groups at a pre-selected higher taxonomic rank using a powerful microbial group test OMiAT. The method then proceeds to test the association for each candidate taxon at the target rank within the significant taxonomic groups identified in the first stage. Hierarchical BH (HBH) and selected subset testing (SST) procedures are evaluated to control the FDR for the two-stage structured tests. RESULTS: Our simulations show that massMap incorporating OMiAT and the advanced FDR controlling methodologies largely alleviates the multiplicity issue. It is statistically more powerful than the traditional association mapping directly at the target rank while controlling the FDR at desired levels under most scenarios. In our real data analyses, massMap detects more or the same amount of associated species with smaller adjusted p values compared to the traditional method, which further illustrates the efficiency of the proposed framework. The R package of massMap is publicly available at https://sites.google.com/site/huilinli09/software and https://github.com/JiyuanHu/. CONCLUSIONS: massMap is a novel microbial association mapping framework and achieves additional efficiency by utilizing the intrinsic taxonomic structure of microbiome data. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40168-018-0517-1) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6060480 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-60604802018-07-31 A two-stage microbial association mapping framework with advanced FDR control Hu, Jiyuan Koh, Hyunwook He, Linchen Liu, Menghan Blaser, Martin J. Li, Huilin Microbiome Methodology BACKGROUND: In microbiome studies, it is important to detect taxa which are associated with pathological outcomes at the lowest definable taxonomic rank, such as genus or species. Traditionally, taxa at the target rank are tested for individual association, followed by the Benjamini-Hochberg (BH) procedure to control for false discovery rate (FDR). However, this approach neglects the dependence structure among taxa and may lead to conservative results. The taxonomic tree of microbiome data represents alignment from phylum to species rank and characterizes evolutionary relationships across microbial taxa. Taxa that are closer on the tree usually have similar responses to the exposure (environment). The statistical power in microbial association tests can be enhanced by efficiently employing the prior evolutionary information via the taxonomic tree. METHODS: We propose a two-stage microbial association mapping framework (massMap) which uses grouping information from the taxonomic tree to strengthen statistical power in association tests at the target rank. massMap first screens the association of taxonomic groups at a pre-selected higher taxonomic rank using a powerful microbial group test OMiAT. The method then proceeds to test the association for each candidate taxon at the target rank within the significant taxonomic groups identified in the first stage. Hierarchical BH (HBH) and selected subset testing (SST) procedures are evaluated to control the FDR for the two-stage structured tests. RESULTS: Our simulations show that massMap incorporating OMiAT and the advanced FDR controlling methodologies largely alleviates the multiplicity issue. It is statistically more powerful than the traditional association mapping directly at the target rank while controlling the FDR at desired levels under most scenarios. In our real data analyses, massMap detects more or the same amount of associated species with smaller adjusted p values compared to the traditional method, which further illustrates the efficiency of the proposed framework. The R package of massMap is publicly available at https://sites.google.com/site/huilinli09/software and https://github.com/JiyuanHu/. CONCLUSIONS: massMap is a novel microbial association mapping framework and achieves additional efficiency by utilizing the intrinsic taxonomic structure of microbiome data. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40168-018-0517-1) contains supplementary material, which is available to authorized users. BioMed Central 2018-07-25 /pmc/articles/PMC6060480/ /pubmed/30045760 http://dx.doi.org/10.1186/s40168-018-0517-1 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Methodology Hu, Jiyuan Koh, Hyunwook He, Linchen Liu, Menghan Blaser, Martin J. Li, Huilin A two-stage microbial association mapping framework with advanced FDR control |
title | A two-stage microbial association mapping framework with advanced FDR control |
title_full | A two-stage microbial association mapping framework with advanced FDR control |
title_fullStr | A two-stage microbial association mapping framework with advanced FDR control |
title_full_unstemmed | A two-stage microbial association mapping framework with advanced FDR control |
title_short | A two-stage microbial association mapping framework with advanced FDR control |
title_sort | two-stage microbial association mapping framework with advanced fdr control |
topic | Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060480/ https://www.ncbi.nlm.nih.gov/pubmed/30045760 http://dx.doi.org/10.1186/s40168-018-0517-1 |
work_keys_str_mv | AT hujiyuan atwostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol AT kohhyunwook atwostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol AT helinchen atwostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol AT liumenghan atwostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol AT blasermartinj atwostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol AT lihuilin atwostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol AT hujiyuan twostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol AT kohhyunwook twostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol AT helinchen twostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol AT liumenghan twostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol AT blasermartinj twostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol AT lihuilin twostagemicrobialassociationmappingframeworkwithadvancedfdrcontrol |