Cargando…
A bivalent compound targeting CCR5 and the mu opioid receptor treats inflammatory arthritis pain in mice without inducing pharmacologic tolerance
BACKGROUND: Pain accompanies rheumatoid arthritis and other chronic inflammatory conditions and is difficult to manage. Although opioids provide potent analgesia, chronic opioid use can cause tolerance and addiction. Recent studies have demonstrated functional interactions between chemokine and opio...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062996/ https://www.ncbi.nlm.nih.gov/pubmed/30053832 http://dx.doi.org/10.1186/s13075-018-1661-5 |
_version_ | 1783342477892124672 |
---|---|
author | Dutta, Raini Lunzer, Mary M. Auger, Jennifer L. Akgün, Eyup Portoghese, Philip S. Binstadt, Bryce A. |
author_facet | Dutta, Raini Lunzer, Mary M. Auger, Jennifer L. Akgün, Eyup Portoghese, Philip S. Binstadt, Bryce A. |
author_sort | Dutta, Raini |
collection | PubMed |
description | BACKGROUND: Pain accompanies rheumatoid arthritis and other chronic inflammatory conditions and is difficult to manage. Although opioids provide potent analgesia, chronic opioid use can cause tolerance and addiction. Recent studies have demonstrated functional interactions between chemokine and opioid receptor signaling pathways. Reported heterodimerization of chemokine and opioid receptors led our group to develop bivalent compounds that bind both types of receptors, with the goal of targeting opioids to sites of inflammation. MCC22 is a novel bivalent compound containing a CCR5 antagonist and mu opioid receptor (MOR) agonist pharmacophores linked through a 22-atom spacer. We evaluated the efficacy of MCC22 in the K/B.g7 T-cell receptor transgenic mouse model of spontaneous inflammatory arthritis. METHODS: MCC22 or morphine was administered intraperitoneally at varying doses to arthritic K/B.g7 mice or nonarthritic control mice. Mechanical pain hypersensitivity was measured each day before and after drug administration, using the electronic von Frey test. The potency of MCC22 relative to that of morphine was calculated. Functional readouts of pain included grip strength and nesting behavior. A separate dosing regimen was used to determine whether the drugs induced pharmacologic tolerance. RESULTS: MCC22 provided ~ 3000-fold more potent analgesia than morphine in this model. Daily treatment with MCC22 also led to a cumulative analgesic effect, reducing the daily baseline pain level. MCC22 produced no observable analgesic effect in nonarthritic control mice. Importantly, repeated administration of MCC22 did not induce pharmacologic tolerance, whereas a similar regimen of morphine did. Both grip strength and nesting behaviors improved among arthritic mice treated with MCC22. Ankle thickness and arthritis scores were not affected by MCC22. The analgesic effect of MCC22 was abolished in K/B.g7 mice genetically lacking CCR5, demonstrating the receptor specificity of the antagonist pharmacophore. CONCLUSIONS: MCC22 is a novel bivalent ligand that targets CCR5 and MOR. Our findings demonstrate that MCC22 provides highly potent analgesia and improved functional outcomes in a model of inflammatory arthritis, without inducing typical opioid tolerance. These findings suggest that MCC22 or similar compounds could be used to treat the pain associated with inflammatory arthritis and related conditions, while minimizing the risks typically associated with chronic opioid use. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13075-018-1661-5) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6062996 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-60629962018-07-31 A bivalent compound targeting CCR5 and the mu opioid receptor treats inflammatory arthritis pain in mice without inducing pharmacologic tolerance Dutta, Raini Lunzer, Mary M. Auger, Jennifer L. Akgün, Eyup Portoghese, Philip S. Binstadt, Bryce A. Arthritis Res Ther Research Article BACKGROUND: Pain accompanies rheumatoid arthritis and other chronic inflammatory conditions and is difficult to manage. Although opioids provide potent analgesia, chronic opioid use can cause tolerance and addiction. Recent studies have demonstrated functional interactions between chemokine and opioid receptor signaling pathways. Reported heterodimerization of chemokine and opioid receptors led our group to develop bivalent compounds that bind both types of receptors, with the goal of targeting opioids to sites of inflammation. MCC22 is a novel bivalent compound containing a CCR5 antagonist and mu opioid receptor (MOR) agonist pharmacophores linked through a 22-atom spacer. We evaluated the efficacy of MCC22 in the K/B.g7 T-cell receptor transgenic mouse model of spontaneous inflammatory arthritis. METHODS: MCC22 or morphine was administered intraperitoneally at varying doses to arthritic K/B.g7 mice or nonarthritic control mice. Mechanical pain hypersensitivity was measured each day before and after drug administration, using the electronic von Frey test. The potency of MCC22 relative to that of morphine was calculated. Functional readouts of pain included grip strength and nesting behavior. A separate dosing regimen was used to determine whether the drugs induced pharmacologic tolerance. RESULTS: MCC22 provided ~ 3000-fold more potent analgesia than morphine in this model. Daily treatment with MCC22 also led to a cumulative analgesic effect, reducing the daily baseline pain level. MCC22 produced no observable analgesic effect in nonarthritic control mice. Importantly, repeated administration of MCC22 did not induce pharmacologic tolerance, whereas a similar regimen of morphine did. Both grip strength and nesting behaviors improved among arthritic mice treated with MCC22. Ankle thickness and arthritis scores were not affected by MCC22. The analgesic effect of MCC22 was abolished in K/B.g7 mice genetically lacking CCR5, demonstrating the receptor specificity of the antagonist pharmacophore. CONCLUSIONS: MCC22 is a novel bivalent ligand that targets CCR5 and MOR. Our findings demonstrate that MCC22 provides highly potent analgesia and improved functional outcomes in a model of inflammatory arthritis, without inducing typical opioid tolerance. These findings suggest that MCC22 or similar compounds could be used to treat the pain associated with inflammatory arthritis and related conditions, while minimizing the risks typically associated with chronic opioid use. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13075-018-1661-5) contains supplementary material, which is available to authorized users. BioMed Central 2018-07-27 2018 /pmc/articles/PMC6062996/ /pubmed/30053832 http://dx.doi.org/10.1186/s13075-018-1661-5 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Dutta, Raini Lunzer, Mary M. Auger, Jennifer L. Akgün, Eyup Portoghese, Philip S. Binstadt, Bryce A. A bivalent compound targeting CCR5 and the mu opioid receptor treats inflammatory arthritis pain in mice without inducing pharmacologic tolerance |
title | A bivalent compound targeting CCR5 and the mu opioid receptor treats inflammatory arthritis pain in mice without inducing pharmacologic tolerance |
title_full | A bivalent compound targeting CCR5 and the mu opioid receptor treats inflammatory arthritis pain in mice without inducing pharmacologic tolerance |
title_fullStr | A bivalent compound targeting CCR5 and the mu opioid receptor treats inflammatory arthritis pain in mice without inducing pharmacologic tolerance |
title_full_unstemmed | A bivalent compound targeting CCR5 and the mu opioid receptor treats inflammatory arthritis pain in mice without inducing pharmacologic tolerance |
title_short | A bivalent compound targeting CCR5 and the mu opioid receptor treats inflammatory arthritis pain in mice without inducing pharmacologic tolerance |
title_sort | bivalent compound targeting ccr5 and the mu opioid receptor treats inflammatory arthritis pain in mice without inducing pharmacologic tolerance |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062996/ https://www.ncbi.nlm.nih.gov/pubmed/30053832 http://dx.doi.org/10.1186/s13075-018-1661-5 |
work_keys_str_mv | AT duttaraini abivalentcompoundtargetingccr5andthemuopioidreceptortreatsinflammatoryarthritispaininmicewithoutinducingpharmacologictolerance AT lunzermarym abivalentcompoundtargetingccr5andthemuopioidreceptortreatsinflammatoryarthritispaininmicewithoutinducingpharmacologictolerance AT augerjenniferl abivalentcompoundtargetingccr5andthemuopioidreceptortreatsinflammatoryarthritispaininmicewithoutinducingpharmacologictolerance AT akguneyup abivalentcompoundtargetingccr5andthemuopioidreceptortreatsinflammatoryarthritispaininmicewithoutinducingpharmacologictolerance AT portoghesephilips abivalentcompoundtargetingccr5andthemuopioidreceptortreatsinflammatoryarthritispaininmicewithoutinducingpharmacologictolerance AT binstadtbrycea abivalentcompoundtargetingccr5andthemuopioidreceptortreatsinflammatoryarthritispaininmicewithoutinducingpharmacologictolerance AT duttaraini bivalentcompoundtargetingccr5andthemuopioidreceptortreatsinflammatoryarthritispaininmicewithoutinducingpharmacologictolerance AT lunzermarym bivalentcompoundtargetingccr5andthemuopioidreceptortreatsinflammatoryarthritispaininmicewithoutinducingpharmacologictolerance AT augerjenniferl bivalentcompoundtargetingccr5andthemuopioidreceptortreatsinflammatoryarthritispaininmicewithoutinducingpharmacologictolerance AT akguneyup bivalentcompoundtargetingccr5andthemuopioidreceptortreatsinflammatoryarthritispaininmicewithoutinducingpharmacologictolerance AT portoghesephilips bivalentcompoundtargetingccr5andthemuopioidreceptortreatsinflammatoryarthritispaininmicewithoutinducingpharmacologictolerance AT binstadtbrycea bivalentcompoundtargetingccr5andthemuopioidreceptortreatsinflammatoryarthritispaininmicewithoutinducingpharmacologictolerance |