Cargando…

Control of protein degradation by N-terminal acetylation and the N-end rule pathway

Nα-terminal acetylation (Nt-acetylation) occurs very frequently and is found in most proteins in eukaryotes. Despite the pervasiveness and universality of Nt-acetylation, its general functions in terms of physiological outcomes remain largely elusive. However, several recent studies have revealed th...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Kha The, Mun, Sang-Hyeon, Lee, Chang-Seok, Hwang, Cheol-Sang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063864/
https://www.ncbi.nlm.nih.gov/pubmed/30054456
http://dx.doi.org/10.1038/s12276-018-0097-y
Descripción
Sumario:Nα-terminal acetylation (Nt-acetylation) occurs very frequently and is found in most proteins in eukaryotes. Despite the pervasiveness and universality of Nt-acetylation, its general functions in terms of physiological outcomes remain largely elusive. However, several recent studies have revealed that Nt-acetylation has a significant impact on protein stability, activity, folding patterns, cellular localization, etc. In addition, Nt-acetylation marks specific proteins for degradation by a branch of the N-end rule pathway, a subset of the ubiquitin-mediated proteolytic system. The N-end rule associates a protein’s in vivo half-life with its N-terminal residue or modifications on its N-terminus. This review provides a current understanding of intracellular proteolysis control by Nt-acetylation and the N-end rule pathway.