Cargando…
Mechanical Structural Design of a Piezoresistive Pressure Sensor for Low-Pressure Measurement: A Computational Analysis by Increases in the Sensor Sensitivity
This paper proposes a novel micro-electromechanical system (MEMS) piezoresistive pressure sensor with a four-petal membrane combined with narrow beams and a center boss (PMNBCB) for low-pressure measurements. The stresses induced in the piezoresistors and deflection of the membrane were calculated u...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069098/ https://www.ncbi.nlm.nih.gov/pubmed/29937534 http://dx.doi.org/10.3390/s18072023 |
_version_ | 1783343421993254912 |
---|---|
author | Tran, Anh Vang Zhang, Xianmin Zhu, Benliang |
author_facet | Tran, Anh Vang Zhang, Xianmin Zhu, Benliang |
author_sort | Tran, Anh Vang |
collection | PubMed |
description | This paper proposes a novel micro-electromechanical system (MEMS) piezoresistive pressure sensor with a four-petal membrane combined with narrow beams and a center boss (PMNBCB) for low-pressure measurements. The stresses induced in the piezoresistors and deflection of the membrane were calculated using the finite element method (FEM). The functions of the relationship between the dimension variables and mechanical performance were determined based on the curve fitting method, which can provide an approach for geometry optimization of the sensor. In addition, the values in the equations were varied to determine the optimal dimensions for the proposed membrane. Then, to further improve the sensitivity of the sensor, a series of rectangular grooves was created at the position of the piezoresistors. The proposed diaphragm was compared to existing diaphragms, and a considerable increase in the sensitivity and a considerable decrease in nonlinearity error could be achieved by using the proposed sensor. The simulation results suggest that the sensor with the PMNBCB structure obtained a high sensitivity of 34.67 mV/kPa and a low nonlinearity error of 0.23% full-scale span (FSS) for the pressure range of 0–5 kPa. The proposed sensor structure is a suitable selection for MEMS piezoresistive pressure sensors. |
format | Online Article Text |
id | pubmed-6069098 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60690982018-08-07 Mechanical Structural Design of a Piezoresistive Pressure Sensor for Low-Pressure Measurement: A Computational Analysis by Increases in the Sensor Sensitivity Tran, Anh Vang Zhang, Xianmin Zhu, Benliang Sensors (Basel) Article This paper proposes a novel micro-electromechanical system (MEMS) piezoresistive pressure sensor with a four-petal membrane combined with narrow beams and a center boss (PMNBCB) for low-pressure measurements. The stresses induced in the piezoresistors and deflection of the membrane were calculated using the finite element method (FEM). The functions of the relationship between the dimension variables and mechanical performance were determined based on the curve fitting method, which can provide an approach for geometry optimization of the sensor. In addition, the values in the equations were varied to determine the optimal dimensions for the proposed membrane. Then, to further improve the sensitivity of the sensor, a series of rectangular grooves was created at the position of the piezoresistors. The proposed diaphragm was compared to existing diaphragms, and a considerable increase in the sensitivity and a considerable decrease in nonlinearity error could be achieved by using the proposed sensor. The simulation results suggest that the sensor with the PMNBCB structure obtained a high sensitivity of 34.67 mV/kPa and a low nonlinearity error of 0.23% full-scale span (FSS) for the pressure range of 0–5 kPa. The proposed sensor structure is a suitable selection for MEMS piezoresistive pressure sensors. MDPI 2018-06-24 /pmc/articles/PMC6069098/ /pubmed/29937534 http://dx.doi.org/10.3390/s18072023 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tran, Anh Vang Zhang, Xianmin Zhu, Benliang Mechanical Structural Design of a Piezoresistive Pressure Sensor for Low-Pressure Measurement: A Computational Analysis by Increases in the Sensor Sensitivity |
title | Mechanical Structural Design of a Piezoresistive Pressure Sensor for Low-Pressure Measurement: A Computational Analysis by Increases in the Sensor Sensitivity |
title_full | Mechanical Structural Design of a Piezoresistive Pressure Sensor for Low-Pressure Measurement: A Computational Analysis by Increases in the Sensor Sensitivity |
title_fullStr | Mechanical Structural Design of a Piezoresistive Pressure Sensor for Low-Pressure Measurement: A Computational Analysis by Increases in the Sensor Sensitivity |
title_full_unstemmed | Mechanical Structural Design of a Piezoresistive Pressure Sensor for Low-Pressure Measurement: A Computational Analysis by Increases in the Sensor Sensitivity |
title_short | Mechanical Structural Design of a Piezoresistive Pressure Sensor for Low-Pressure Measurement: A Computational Analysis by Increases in the Sensor Sensitivity |
title_sort | mechanical structural design of a piezoresistive pressure sensor for low-pressure measurement: a computational analysis by increases in the sensor sensitivity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069098/ https://www.ncbi.nlm.nih.gov/pubmed/29937534 http://dx.doi.org/10.3390/s18072023 |
work_keys_str_mv | AT trananhvang mechanicalstructuraldesignofapiezoresistivepressuresensorforlowpressuremeasurementacomputationalanalysisbyincreasesinthesensorsensitivity AT zhangxianmin mechanicalstructuraldesignofapiezoresistivepressuresensorforlowpressuremeasurementacomputationalanalysisbyincreasesinthesensorsensitivity AT zhubenliang mechanicalstructuraldesignofapiezoresistivepressuresensorforlowpressuremeasurementacomputationalanalysisbyincreasesinthesensorsensitivity |