Cargando…
HiCcompare: an R-package for joint normalization and comparison of HI-C datasets
BACKGROUND: Changes in spatial chromatin interactions are now emerging as a unifying mechanism orchestrating the regulation of gene expression. Hi-C sequencing technology allows insight into chromatin interactions on a genome-wide scale. However, Hi-C data contains many DNA sequence- and technology-...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069782/ https://www.ncbi.nlm.nih.gov/pubmed/30064362 http://dx.doi.org/10.1186/s12859-018-2288-x |
Sumario: | BACKGROUND: Changes in spatial chromatin interactions are now emerging as a unifying mechanism orchestrating the regulation of gene expression. Hi-C sequencing technology allows insight into chromatin interactions on a genome-wide scale. However, Hi-C data contains many DNA sequence- and technology-driven biases. These biases prevent effective comparison of chromatin interactions aimed at identifying genomic regions differentially interacting between, e.g., disease-normal states or different cell types. Several methods have been developed for normalizing individual Hi-C datasets. However, they fail to account for biases between two or more Hi-C datasets, hindering comparative analysis of chromatin interactions. RESULTS: We developed a simple and effective method, HiCcompare, for the joint normalization and differential analysis of multiple Hi-C datasets. The method introduces a distance-centric analysis and visualization of the differences between two Hi-C datasets on a single plot that allows for a data-driven normalization of biases using locally weighted linear regression (loess). HiCcompare outperforms methods for normalizing individual Hi-C datasets and methods for differential analysis (diffHiC, FIND) in detecting a priori known chromatin interaction differences while preserving the detection of genomic structures, such as A/B compartments. CONCLUSIONS: HiCcompare is able to remove between-dataset bias present in Hi-C matrices. It also provides a user-friendly tool to allow the scientific community to perform direct comparisons between the growing number of pre-processed Hi-C datasets available at online repositories. HiCcompare is freely available as a Bioconductor R package https://bioconductor.org/packages/HiCcompare/. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-018-2288-x) contains supplementary material, which is available to authorized users. |
---|