Cargando…
Genetically engineered cerebral organoids model brain tumour formation
Brain tumours are among the most lethal and devastating cancers. Their study is limited by genetic heterogeneity and the incompleteness of available laboratory models. Three-dimensional organoid culture models offer innovative possibilities for modelling human disease. Here, we establish a 3D in vit...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071863/ https://www.ncbi.nlm.nih.gov/pubmed/30038414 http://dx.doi.org/10.1038/s41592-018-0070-7 |
_version_ | 1783343932253405184 |
---|---|
author | Bian, Shan Repic, Marko Guo, Zhenming Kavirayani, Anoop Burkard, Thomas Bagley, Joshua A. Krauditsch, Christian Knoblich, Jürgen A. |
author_facet | Bian, Shan Repic, Marko Guo, Zhenming Kavirayani, Anoop Burkard, Thomas Bagley, Joshua A. Krauditsch, Christian Knoblich, Jürgen A. |
author_sort | Bian, Shan |
collection | PubMed |
description | Brain tumours are among the most lethal and devastating cancers. Their study is limited by genetic heterogeneity and the incompleteness of available laboratory models. Three-dimensional organoid culture models offer innovative possibilities for modelling human disease. Here, we establish a 3D in vitro model, named neoplastic cerebral organoid (neoCOR), in which we recapitulate brain tumorigenesis by introducing oncogenic mutations in cerebral organoids via transposon- and CRISPR/Cas9-mediated mutagenesis. By screening clinically-relevant mutations identified in cancer genome projects, we define mutation combinations that result in glioblastoma-like and central nervous system primitive neuroectodermal tumour (CNS-PNET)-like neoplasms. We demonstrate that neoCORs are suitable to study aspects of tumour biology such as invasiveness, and to evaluate the effect of drugs in the context of specific DNA aberrations. neoCORs will provide a valuable complement to current basic and preclinical models for studying brain tumour biology. |
format | Online Article Text |
id | pubmed-6071863 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-60718632019-01-23 Genetically engineered cerebral organoids model brain tumour formation Bian, Shan Repic, Marko Guo, Zhenming Kavirayani, Anoop Burkard, Thomas Bagley, Joshua A. Krauditsch, Christian Knoblich, Jürgen A. Nat Methods Article Brain tumours are among the most lethal and devastating cancers. Their study is limited by genetic heterogeneity and the incompleteness of available laboratory models. Three-dimensional organoid culture models offer innovative possibilities for modelling human disease. Here, we establish a 3D in vitro model, named neoplastic cerebral organoid (neoCOR), in which we recapitulate brain tumorigenesis by introducing oncogenic mutations in cerebral organoids via transposon- and CRISPR/Cas9-mediated mutagenesis. By screening clinically-relevant mutations identified in cancer genome projects, we define mutation combinations that result in glioblastoma-like and central nervous system primitive neuroectodermal tumour (CNS-PNET)-like neoplasms. We demonstrate that neoCORs are suitable to study aspects of tumour biology such as invasiveness, and to evaluate the effect of drugs in the context of specific DNA aberrations. neoCORs will provide a valuable complement to current basic and preclinical models for studying brain tumour biology. 2018-07-23 2018-08 /pmc/articles/PMC6071863/ /pubmed/30038414 http://dx.doi.org/10.1038/s41592-018-0070-7 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Bian, Shan Repic, Marko Guo, Zhenming Kavirayani, Anoop Burkard, Thomas Bagley, Joshua A. Krauditsch, Christian Knoblich, Jürgen A. Genetically engineered cerebral organoids model brain tumour formation |
title | Genetically engineered cerebral organoids model brain tumour formation |
title_full | Genetically engineered cerebral organoids model brain tumour formation |
title_fullStr | Genetically engineered cerebral organoids model brain tumour formation |
title_full_unstemmed | Genetically engineered cerebral organoids model brain tumour formation |
title_short | Genetically engineered cerebral organoids model brain tumour formation |
title_sort | genetically engineered cerebral organoids model brain tumour formation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071863/ https://www.ncbi.nlm.nih.gov/pubmed/30038414 http://dx.doi.org/10.1038/s41592-018-0070-7 |
work_keys_str_mv | AT bianshan geneticallyengineeredcerebralorganoidsmodelbraintumourformation AT repicmarko geneticallyengineeredcerebralorganoidsmodelbraintumourformation AT guozhenming geneticallyengineeredcerebralorganoidsmodelbraintumourformation AT kavirayanianoop geneticallyengineeredcerebralorganoidsmodelbraintumourformation AT burkardthomas geneticallyengineeredcerebralorganoidsmodelbraintumourformation AT bagleyjoshuaa geneticallyengineeredcerebralorganoidsmodelbraintumourformation AT krauditschchristian geneticallyengineeredcerebralorganoidsmodelbraintumourformation AT knoblichjurgena geneticallyengineeredcerebralorganoidsmodelbraintumourformation |