Cargando…

Detection and benchmarking of somatic mutations in cancer genomes using RNA-seq data

To detect functional somatic mutations in tumor samples, whole-exome sequencing (WES) is often used for its reliability and relative low cost. RNA-seq, while generally used to measure gene expression, can potentially also be used for identification of somatic mutations. However there has been little...

Descripción completa

Detalles Bibliográficos
Autores principales: Coudray, Alexandre, Battenhouse, Anna M., Bucher, Philipp, Iyer, Vishwanath R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6074801/
https://www.ncbi.nlm.nih.gov/pubmed/30083469
http://dx.doi.org/10.7717/peerj.5362
_version_ 1783344489162604544
author Coudray, Alexandre
Battenhouse, Anna M.
Bucher, Philipp
Iyer, Vishwanath R.
author_facet Coudray, Alexandre
Battenhouse, Anna M.
Bucher, Philipp
Iyer, Vishwanath R.
author_sort Coudray, Alexandre
collection PubMed
description To detect functional somatic mutations in tumor samples, whole-exome sequencing (WES) is often used for its reliability and relative low cost. RNA-seq, while generally used to measure gene expression, can potentially also be used for identification of somatic mutations. However there has been little systematic evaluation of the utility of RNA-seq for identifying somatic mutations. Here, we develop and evaluate a pipeline for processing RNA-seq data from glioblastoma multiforme (GBM) tumors in order to identify somatic mutations. The pipeline entails the use of the STAR aligner 2-pass procedure jointly with MuTect2 from genome analysis toolkit (GATK) to detect somatic variants. Variants identified from RNA-seq data were evaluated by comparison against the COSMIC and dbSNP databases, and also compared to somatic variants identified by exome sequencing. We also estimated the putative functional impact of coding variants in the most frequently mutated genes in GBM. Interestingly, variants identified by RNA-seq alone showed better representation of GBM-related mutations cataloged by COSMIC. RNA-seq-only data substantially outperformed the ability of WES to reveal potentially new somatic mutations in known GBM-related pathways, and allowed us to build a high-quality set of somatic mutations common to exome and RNA-seq calls. Using RNA-seq data in parallel with WES data to detect somatic mutations in cancer genomes can thus broaden the scope of discoveries and lend additional support to somatic variants identified by exome sequencing alone.
format Online
Article
Text
id pubmed-6074801
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-60748012018-08-06 Detection and benchmarking of somatic mutations in cancer genomes using RNA-seq data Coudray, Alexandre Battenhouse, Anna M. Bucher, Philipp Iyer, Vishwanath R. PeerJ Bioinformatics To detect functional somatic mutations in tumor samples, whole-exome sequencing (WES) is often used for its reliability and relative low cost. RNA-seq, while generally used to measure gene expression, can potentially also be used for identification of somatic mutations. However there has been little systematic evaluation of the utility of RNA-seq for identifying somatic mutations. Here, we develop and evaluate a pipeline for processing RNA-seq data from glioblastoma multiforme (GBM) tumors in order to identify somatic mutations. The pipeline entails the use of the STAR aligner 2-pass procedure jointly with MuTect2 from genome analysis toolkit (GATK) to detect somatic variants. Variants identified from RNA-seq data were evaluated by comparison against the COSMIC and dbSNP databases, and also compared to somatic variants identified by exome sequencing. We also estimated the putative functional impact of coding variants in the most frequently mutated genes in GBM. Interestingly, variants identified by RNA-seq alone showed better representation of GBM-related mutations cataloged by COSMIC. RNA-seq-only data substantially outperformed the ability of WES to reveal potentially new somatic mutations in known GBM-related pathways, and allowed us to build a high-quality set of somatic mutations common to exome and RNA-seq calls. Using RNA-seq data in parallel with WES data to detect somatic mutations in cancer genomes can thus broaden the scope of discoveries and lend additional support to somatic variants identified by exome sequencing alone. PeerJ Inc. 2018-07-31 /pmc/articles/PMC6074801/ /pubmed/30083469 http://dx.doi.org/10.7717/peerj.5362 Text en © 2018 Coudray et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Bioinformatics
Coudray, Alexandre
Battenhouse, Anna M.
Bucher, Philipp
Iyer, Vishwanath R.
Detection and benchmarking of somatic mutations in cancer genomes using RNA-seq data
title Detection and benchmarking of somatic mutations in cancer genomes using RNA-seq data
title_full Detection and benchmarking of somatic mutations in cancer genomes using RNA-seq data
title_fullStr Detection and benchmarking of somatic mutations in cancer genomes using RNA-seq data
title_full_unstemmed Detection and benchmarking of somatic mutations in cancer genomes using RNA-seq data
title_short Detection and benchmarking of somatic mutations in cancer genomes using RNA-seq data
title_sort detection and benchmarking of somatic mutations in cancer genomes using rna-seq data
topic Bioinformatics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6074801/
https://www.ncbi.nlm.nih.gov/pubmed/30083469
http://dx.doi.org/10.7717/peerj.5362
work_keys_str_mv AT coudrayalexandre detectionandbenchmarkingofsomaticmutationsincancergenomesusingrnaseqdata
AT battenhouseannam detectionandbenchmarkingofsomaticmutationsincancergenomesusingrnaseqdata
AT bucherphilipp detectionandbenchmarkingofsomaticmutationsincancergenomesusingrnaseqdata
AT iyervishwanathr detectionandbenchmarkingofsomaticmutationsincancergenomesusingrnaseqdata