Cargando…
Caloric restriction effects on liver mTOR signaling are time-of-day dependent
The regulation of mechanistic target of rapamycin (mTOR) signaling contributes to the metabolic effects of a calorie restriction (CR) diet. We assayed the effect of CR on the activity of mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) in the liver of mice at six different times across the day. C...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6075448/ https://www.ncbi.nlm.nih.gov/pubmed/30018180 http://dx.doi.org/10.18632/aging.101498 |
_version_ | 1783344590099578880 |
---|---|
author | Tulsian, Richa Velingkaar, Nikkhil Kondratov, Roman |
author_facet | Tulsian, Richa Velingkaar, Nikkhil Kondratov, Roman |
author_sort | Tulsian, Richa |
collection | PubMed |
description | The regulation of mechanistic target of rapamycin (mTOR) signaling contributes to the metabolic effects of a calorie restriction (CR) diet. We assayed the effect of CR on the activity of mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) in the liver of mice at six different times across the day. CR effects on mTORC1 and mTORC2 activities were time-of-day dependent. CR induced mTORC1 activity at one time, reduced at two times and has no effect during other times. CR induced mTORC2 activity at one time of the day and has no effects at other times. Circadian clocks are implemented in the regulation of mTOR signaling in mammals and mechanisms of CR. We assayed the effect of CR on mTOR signaling in the liver of mice deficient for circadian transcriptional regulators BMAL1 and CRYs. The CR induced suppression of mTORC1 activity was observed in both clock mutants, while up regulation of mTORC2 was observed in the liver of CRY deficient but not in the liver of BMAL1 deficient mice. Our finding revealed that CR has different time dependent effect on the activity of mTOR complexes 1 and 2 and suggest that circadian clock protein BMAL1 is involved in the up regulation of mTORC2 upon CR in mammals. |
format | Online Article Text |
id | pubmed-6075448 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Impact Journals |
record_format | MEDLINE/PubMed |
spelling | pubmed-60754482018-08-06 Caloric restriction effects on liver mTOR signaling are time-of-day dependent Tulsian, Richa Velingkaar, Nikkhil Kondratov, Roman Aging (Albany NY) Research Paper The regulation of mechanistic target of rapamycin (mTOR) signaling contributes to the metabolic effects of a calorie restriction (CR) diet. We assayed the effect of CR on the activity of mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) in the liver of mice at six different times across the day. CR effects on mTORC1 and mTORC2 activities were time-of-day dependent. CR induced mTORC1 activity at one time, reduced at two times and has no effect during other times. CR induced mTORC2 activity at one time of the day and has no effects at other times. Circadian clocks are implemented in the regulation of mTOR signaling in mammals and mechanisms of CR. We assayed the effect of CR on mTOR signaling in the liver of mice deficient for circadian transcriptional regulators BMAL1 and CRYs. The CR induced suppression of mTORC1 activity was observed in both clock mutants, while up regulation of mTORC2 was observed in the liver of CRY deficient but not in the liver of BMAL1 deficient mice. Our finding revealed that CR has different time dependent effect on the activity of mTOR complexes 1 and 2 and suggest that circadian clock protein BMAL1 is involved in the up regulation of mTORC2 upon CR in mammals. Impact Journals 2018-07-16 /pmc/articles/PMC6075448/ /pubmed/30018180 http://dx.doi.org/10.18632/aging.101498 Text en Copyright © 2018 Tulsian et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY) 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Paper Tulsian, Richa Velingkaar, Nikkhil Kondratov, Roman Caloric restriction effects on liver mTOR signaling are time-of-day dependent |
title | Caloric restriction effects on liver mTOR signaling are time-of-day dependent |
title_full | Caloric restriction effects on liver mTOR signaling are time-of-day dependent |
title_fullStr | Caloric restriction effects on liver mTOR signaling are time-of-day dependent |
title_full_unstemmed | Caloric restriction effects on liver mTOR signaling are time-of-day dependent |
title_short | Caloric restriction effects on liver mTOR signaling are time-of-day dependent |
title_sort | caloric restriction effects on liver mtor signaling are time-of-day dependent |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6075448/ https://www.ncbi.nlm.nih.gov/pubmed/30018180 http://dx.doi.org/10.18632/aging.101498 |
work_keys_str_mv | AT tulsianricha caloricrestrictioneffectsonlivermtorsignalingaretimeofdaydependent AT velingkaarnikkhil caloricrestrictioneffectsonlivermtorsignalingaretimeofdaydependent AT kondratovroman caloricrestrictioneffectsonlivermtorsignalingaretimeofdaydependent |