Cargando…
Improving knowledge on the activation of bone marrow fibroblasts in MGUS and MM disease through the automatic extraction of genes via a nonnegative matrix factorization approach on gene expression profiles
BACKGROUND: Multiple myeloma (MM) is a cancer of terminally differentiated plasma that is part of a spectrum of blood diseases. The role of the micro-environment is crucial for MM clonal evolution. METHODS: This paper describes the analysis carried out on a limited number of genes automatically extr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076394/ https://www.ncbi.nlm.nih.gov/pubmed/30075788 http://dx.doi.org/10.1186/s12967-018-1589-1 |
Sumario: | BACKGROUND: Multiple myeloma (MM) is a cancer of terminally differentiated plasma that is part of a spectrum of blood diseases. The role of the micro-environment is crucial for MM clonal evolution. METHODS: This paper describes the analysis carried out on a limited number of genes automatically extracted by a nonnegative matrix factorization (NMF) based approach from gene expression profiles of bone marrow fibroblasts of patients with monoclonal gammopathy of undetermined significance (MGUS) and MM. RESULTS: Automatic exploration through NMF, combined with a motivated post-processing procedure and a pathways analysis of extracted genes, allowed to infer that a functional switch is required to lead fibroblasts to acquire pro-tumorigenic activity in the progression of the disease from MGUS to MM. CONCLUSION: The extracted biologically relevant genes may be representative of the considered clinical conditions and may contribute to a deeper understanding of tumor behavior. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12967-018-1589-1) contains supplementary material, which is available to authorized users. |
---|