Cargando…

Distinct amino acid motifs carrying multiple positive charges regulate membrane targeting of dysferlin and MG53

Dysferlin (Dysf) and mitsugumin53 (MG53) are two key proteins involved in membrane repair of muscle cells which are efficiently recruited to the sarcolemma upon lesioning. Plasma membrane localization and recruitment of a Dysf fragment to membrane lesions in zebrafish myofibers relies on the presenc...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Lu, Middel, Volker, Reischl, Markus, Strähle, Uwe, Nienhaus, G. Ulrich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084962/
https://www.ncbi.nlm.nih.gov/pubmed/30092031
http://dx.doi.org/10.1371/journal.pone.0202052
Descripción
Sumario:Dysferlin (Dysf) and mitsugumin53 (MG53) are two key proteins involved in membrane repair of muscle cells which are efficiently recruited to the sarcolemma upon lesioning. Plasma membrane localization and recruitment of a Dysf fragment to membrane lesions in zebrafish myofibers relies on the presence of a short, polybasic amino acid motif, WRRFK. Here we show that the positive charges carried by this motif are responsible for this function. In mouse MG53, we have identified a similar motif with multiple basic residues, WKKMFR. A single amino acid replacement, K279A, leads to severe aggregation of MG53 in inclusion bodies in HeLa cells. This result is due to the loss of positive charge, as shown by studying the effects of other neutral amino acids at position 279. Consequently, our data suggest that positively charged amino acid stretches play an essential role in the localization and function of Dysf and MG53.