Cargando…

Lysyl hydroxylases are transcription targets for GATA3 driving lung cancer cell metastasis

Metastasis associates with late stages of lung cancer progression and remains the main cause of patient death due to the lack of clinically effective therapeutics. Here we report that the transcription factor GATA3 and its co-factor FOG2 commonly promote the expression of the lysyl hydroxylase (LH)...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Wei, Zhang, Ting, Guo, Lixia, Wang, Yuanyuan, Yang, Yanan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085355/
https://www.ncbi.nlm.nih.gov/pubmed/30093726
http://dx.doi.org/10.1038/s41598-018-30309-9
Descripción
Sumario:Metastasis associates with late stages of lung cancer progression and remains the main cause of patient death due to the lack of clinically effective therapeutics. Here we report that the transcription factor GATA3 and its co-factor FOG2 commonly promote the expression of the lysyl hydroxylase (LH) family members, including LH2 and LH3, which in turn drive lung adenocarcinoma cell migration, invasion, and metastasis. We show evidence that both LH2 and LH3 are direct transcription targets for GATA3. Knockdown of either LH2 or LH3 suppresses migration and invasion; on the contrary, forced expression of LH2 or LH3 promotes growth and migration, suggesting that the two LHs exert redundant oncogenic functions. Importantly, re-expression of LH2 is sufficient to restore the metastatic capacity of GATA3-depleted cells, suggesting a role for LHs as the downstream mediators of GATA3. Collectively, our data reveal a pro-metastatic GATA3-LHs axis for lung cancer, supporting the notion that targeting LHs may be useful for treating lung cancer.