Cargando…
Maternal gene Ooep may participate in homologous recombination-mediated DNA double-strand break repair in mouse oocytes
DNA damage in oocytes can cause infertility and birth defects. DNA double-strand breaks (DSBs) are highly deleterious and can substantially impair genome integrity. Homologous recombination (HR)-mediated DNA DSB repair plays dominant roles in safeguarding oocyte quantity and quality. However, little...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Science Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085769/ https://www.ncbi.nlm.nih.gov/pubmed/29955025 http://dx.doi.org/10.24272/j.issn.2095-8137.2018.067 |
_version_ | 1783346400665272320 |
---|---|
author | He, Da-Jian Wang, Lin Zhang, Zhi-Bi Guo, Kun Li, Jing-Zheng He, Xie-Chao Cui, Qing-Hua Zheng, Ping |
author_facet | He, Da-Jian Wang, Lin Zhang, Zhi-Bi Guo, Kun Li, Jing-Zheng He, Xie-Chao Cui, Qing-Hua Zheng, Ping |
author_sort | He, Da-Jian |
collection | PubMed |
description | DNA damage in oocytes can cause infertility and birth defects. DNA double-strand breaks (DSBs) are highly deleterious and can substantially impair genome integrity. Homologous recombination (HR)-mediated DNA DSB repair plays dominant roles in safeguarding oocyte quantity and quality. However, little is known regarding the key players of the HR repair pathway in oocytes. Here, we identified oocyte-specific gene Ooep as a novel key component of the HR repair pathway in mouse oocytes. OOEP was required for efficient ataxia telangiectasia mutated (ATM) kinase activation and Rad51 recombinase (RAD51) focal accumulation at DNA DSBs. Ooep null oocytes were defective in DNA DSB repair and prone to apoptosis upon exogenous DNA damage insults. Moreover, Ooep null oocytes exhibited delayed meiotic maturation. Therefore, OOEP played roles in preserving oocyte quantity and quality by maintaining genome stability. Ooep expression decreased with the advance of maternal age, suggesting its involvement in maternal aging. |
format | Online Article Text |
id | pubmed-6085769 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Science Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-60857692018-11-18 Maternal gene Ooep may participate in homologous recombination-mediated DNA double-strand break repair in mouse oocytes He, Da-Jian Wang, Lin Zhang, Zhi-Bi Guo, Kun Li, Jing-Zheng He, Xie-Chao Cui, Qing-Hua Zheng, Ping Zool Res Article DNA damage in oocytes can cause infertility and birth defects. DNA double-strand breaks (DSBs) are highly deleterious and can substantially impair genome integrity. Homologous recombination (HR)-mediated DNA DSB repair plays dominant roles in safeguarding oocyte quantity and quality. However, little is known regarding the key players of the HR repair pathway in oocytes. Here, we identified oocyte-specific gene Ooep as a novel key component of the HR repair pathway in mouse oocytes. OOEP was required for efficient ataxia telangiectasia mutated (ATM) kinase activation and Rad51 recombinase (RAD51) focal accumulation at DNA DSBs. Ooep null oocytes were defective in DNA DSB repair and prone to apoptosis upon exogenous DNA damage insults. Moreover, Ooep null oocytes exhibited delayed meiotic maturation. Therefore, OOEP played roles in preserving oocyte quantity and quality by maintaining genome stability. Ooep expression decreased with the advance of maternal age, suggesting its involvement in maternal aging. Science Press 2018-06-15 2018-11-18 /pmc/articles/PMC6085769/ /pubmed/29955025 http://dx.doi.org/10.24272/j.issn.2095-8137.2018.067 Text en © 2018. Editorial Office of Zoological Research, Kunming Institute of Zoology, Chinese Academy of Sciences http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Article He, Da-Jian Wang, Lin Zhang, Zhi-Bi Guo, Kun Li, Jing-Zheng He, Xie-Chao Cui, Qing-Hua Zheng, Ping Maternal gene Ooep may participate in homologous recombination-mediated DNA double-strand break repair in mouse oocytes |
title | Maternal gene Ooep may participate in homologous recombination-mediated DNA double-strand break repair in mouse oocytes |
title_full | Maternal gene Ooep may participate in homologous recombination-mediated DNA double-strand break repair in mouse oocytes |
title_fullStr | Maternal gene Ooep may participate in homologous recombination-mediated DNA double-strand break repair in mouse oocytes |
title_full_unstemmed | Maternal gene Ooep may participate in homologous recombination-mediated DNA double-strand break repair in mouse oocytes |
title_short | Maternal gene Ooep may participate in homologous recombination-mediated DNA double-strand break repair in mouse oocytes |
title_sort | maternal gene ooep may participate in homologous recombination-mediated dna double-strand break repair in mouse oocytes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085769/ https://www.ncbi.nlm.nih.gov/pubmed/29955025 http://dx.doi.org/10.24272/j.issn.2095-8137.2018.067 |
work_keys_str_mv | AT hedajian maternalgeneooepmayparticipateinhomologousrecombinationmediateddnadoublestrandbreakrepairinmouseoocytes AT wanglin maternalgeneooepmayparticipateinhomologousrecombinationmediateddnadoublestrandbreakrepairinmouseoocytes AT zhangzhibi maternalgeneooepmayparticipateinhomologousrecombinationmediateddnadoublestrandbreakrepairinmouseoocytes AT guokun maternalgeneooepmayparticipateinhomologousrecombinationmediateddnadoublestrandbreakrepairinmouseoocytes AT lijingzheng maternalgeneooepmayparticipateinhomologousrecombinationmediateddnadoublestrandbreakrepairinmouseoocytes AT hexiechao maternalgeneooepmayparticipateinhomologousrecombinationmediateddnadoublestrandbreakrepairinmouseoocytes AT cuiqinghua maternalgeneooepmayparticipateinhomologousrecombinationmediateddnadoublestrandbreakrepairinmouseoocytes AT zhengping maternalgeneooepmayparticipateinhomologousrecombinationmediateddnadoublestrandbreakrepairinmouseoocytes |