Cargando…

Thickness Dependence on Interfacial and Electrical Properties in Atomic Layer Deposited AlN on c-plane GaN

The interfacial and electrical properties of atomic layer deposited AlN on n-GaN with different AlN thicknesses were investigated. According to capacitance–voltage (C–V) characteristics, the sample with a 7.4-nm-thick AlN showed the highest interface and oxide trap densities. When the AlN thickness...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hogyoung, Yoon, Hee Ju, Choi, Byung Joon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6086779/
https://www.ncbi.nlm.nih.gov/pubmed/30097798
http://dx.doi.org/10.1186/s11671-018-2645-8
Descripción
Sumario:The interfacial and electrical properties of atomic layer deposited AlN on n-GaN with different AlN thicknesses were investigated. According to capacitance–voltage (C–V) characteristics, the sample with a 7.4-nm-thick AlN showed the highest interface and oxide trap densities. When the AlN thickness was 0.7 nm, X-ray photoelectron spectroscopy (XPS) spectra showed the dominant peak associated with Al–O bonds, along with no clear AlN peak. The amount of remained oxygen atoms near the GaN surface was found to decrease for the thicker AlN. However, many oxygen atoms were present across the AlN layer, provided the oxygen-related defects, which eventually increased the interface state density. The barrier inhomogeneity with thermionic emission (TE) model was appropriate to explain the forward bias current for the sample with a 7.4-nm-thick AlN, which was not proper for the sample with a 0.7-nm-thick AlN. The reverse leakage currents for both the samples with 0.7- and 7.4-nm-thick AlN were explained better using Fowler–Nordheim (FN) rather than Poole–Frenkel emissions.