Cargando…

TNFR2 ligation in human T regulatory cells enhances IL2-induced cell proliferation through the non-canonical NF-κB pathway

Human T regulatory cells (T regs) express high levels of TNF receptor 2 (TNFR2). Ligation of TNFR2 with TNF, which can recognise both TNFR1 and TNFR2, or with a TNFR2-selective binding molecule, DARPin 18 (D18) activates canonical NF-κB signalling, assessed by IκBα degradation, and the magnitude of...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jun, Ferreira, Ricardo, Lu, Wanhua, Farrow, Samatha, Downes, Kate, Jermutus, Lutz, Minter, Ralph, Al-Lamki, Rafia S., Pober, Jordan S., Bradley, John R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6089958/
https://www.ncbi.nlm.nih.gov/pubmed/30104686
http://dx.doi.org/10.1038/s41598-018-30621-4
Descripción
Sumario:Human T regulatory cells (T regs) express high levels of TNF receptor 2 (TNFR2). Ligation of TNFR2 with TNF, which can recognise both TNFR1 and TNFR2, or with a TNFR2-selective binding molecule, DARPin 18 (D18) activates canonical NF-κB signalling, assessed by IκBα degradation, and the magnitude of the response correlates with the level of TNFR2 expression. RNA-seq analysis of TNF- or D18-treated human T regs revealed that TNFR2 ligation induces transcription of NFKB2 and RELB, encoding proteins that form the non-canonical NF-κB transcription factor. In combination with IL2, D18 treatment is specific for T regs in (1) stabilising NF-κB-inducing kinase protein, the activator of non-canonical NF-κB signalling, (2) inducing translocation of RelB from cytosol to nucleus, (3) increasing cell cycle entry, and (4) increasing cell numbers. However, the regulatory function of the expanded T regs is unaltered. Inhibition of RelB nuclear translocation blocks the proliferative response. We conclude that ligation of TNFR2 by D18 enhances IL2-induced T regs proliferation and expansion in cell number through the non-canonical NF-κB pathway.