Cargando…
Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2
Curcumin, the active ingredient in Curcuma longa, has been in medicinal use since ancient times. However, the therapeutic targets and signaling cascades modulated by curcumin have been enigmatic despite extensive research. Here we identify dual-specificity tyrosine-regulated kinase 2 (DYRK2), a posi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6094102/ https://www.ncbi.nlm.nih.gov/pubmed/29987021 http://dx.doi.org/10.1073/pnas.1806797115 |
_version_ | 1783347765400567808 |
---|---|
author | Banerjee, Sourav Ji, Chenggong Mayfield, Joshua E. Goel, Apollina Xiao, Junyu Dixon, Jack E. Guo, Xing |
author_facet | Banerjee, Sourav Ji, Chenggong Mayfield, Joshua E. Goel, Apollina Xiao, Junyu Dixon, Jack E. Guo, Xing |
author_sort | Banerjee, Sourav |
collection | PubMed |
description | Curcumin, the active ingredient in Curcuma longa, has been in medicinal use since ancient times. However, the therapeutic targets and signaling cascades modulated by curcumin have been enigmatic despite extensive research. Here we identify dual-specificity tyrosine-regulated kinase 2 (DYRK2), a positive regulator of the 26S proteasome, as a direct target of curcumin. Curcumin occupies the ATP-binding pocket of DYRK2 in the cocrystal structure, and it potently and specifically inhibits DYRK2 over 139 other kinases tested in vitro. As a result, curcumin diminishes DYRK2-mediated 26S proteasome phosphorylation in cells, leading to reduced proteasome activity and impaired cell proliferation. Interestingly, curcumin synergizes with the therapeutic proteasome inhibitor carfilzomib to induce apoptosis in a variety of proteasome-addicted cancer cells, while this drug combination exhibits modest to no cytotoxicity to noncancerous cells. In a breast cancer xenograft model, curcumin treatment significantly reduces tumor burden in immunocompromised mice, showing a similar antitumor effect as CRISPR/Cas9-mediated DYRK2 depletion. These results reveal an unexpected role of curcumin in DYRK2-proteasome inhibition and provide a proof-of-concept that pharmacological manipulation of proteasome regulators may offer new opportunities for anticancer treatment. |
format | Online Article Text |
id | pubmed-6094102 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-60941022018-08-17 Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2 Banerjee, Sourav Ji, Chenggong Mayfield, Joshua E. Goel, Apollina Xiao, Junyu Dixon, Jack E. Guo, Xing Proc Natl Acad Sci U S A Biological Sciences Curcumin, the active ingredient in Curcuma longa, has been in medicinal use since ancient times. However, the therapeutic targets and signaling cascades modulated by curcumin have been enigmatic despite extensive research. Here we identify dual-specificity tyrosine-regulated kinase 2 (DYRK2), a positive regulator of the 26S proteasome, as a direct target of curcumin. Curcumin occupies the ATP-binding pocket of DYRK2 in the cocrystal structure, and it potently and specifically inhibits DYRK2 over 139 other kinases tested in vitro. As a result, curcumin diminishes DYRK2-mediated 26S proteasome phosphorylation in cells, leading to reduced proteasome activity and impaired cell proliferation. Interestingly, curcumin synergizes with the therapeutic proteasome inhibitor carfilzomib to induce apoptosis in a variety of proteasome-addicted cancer cells, while this drug combination exhibits modest to no cytotoxicity to noncancerous cells. In a breast cancer xenograft model, curcumin treatment significantly reduces tumor burden in immunocompromised mice, showing a similar antitumor effect as CRISPR/Cas9-mediated DYRK2 depletion. These results reveal an unexpected role of curcumin in DYRK2-proteasome inhibition and provide a proof-of-concept that pharmacological manipulation of proteasome regulators may offer new opportunities for anticancer treatment. National Academy of Sciences 2018-08-07 2018-07-09 /pmc/articles/PMC6094102/ /pubmed/29987021 http://dx.doi.org/10.1073/pnas.1806797115 Text en Copyright © 2018 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Banerjee, Sourav Ji, Chenggong Mayfield, Joshua E. Goel, Apollina Xiao, Junyu Dixon, Jack E. Guo, Xing Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2 |
title | Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2 |
title_full | Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2 |
title_fullStr | Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2 |
title_full_unstemmed | Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2 |
title_short | Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2 |
title_sort | ancient drug curcumin impedes 26s proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2 |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6094102/ https://www.ncbi.nlm.nih.gov/pubmed/29987021 http://dx.doi.org/10.1073/pnas.1806797115 |
work_keys_str_mv | AT banerjeesourav ancientdrugcurcuminimpedes26sproteasomeactivitybydirectinhibitionofdualspecificitytyrosineregulatedkinase2 AT jichenggong ancientdrugcurcuminimpedes26sproteasomeactivitybydirectinhibitionofdualspecificitytyrosineregulatedkinase2 AT mayfieldjoshuae ancientdrugcurcuminimpedes26sproteasomeactivitybydirectinhibitionofdualspecificitytyrosineregulatedkinase2 AT goelapollina ancientdrugcurcuminimpedes26sproteasomeactivitybydirectinhibitionofdualspecificitytyrosineregulatedkinase2 AT xiaojunyu ancientdrugcurcuminimpedes26sproteasomeactivitybydirectinhibitionofdualspecificitytyrosineregulatedkinase2 AT dixonjacke ancientdrugcurcuminimpedes26sproteasomeactivitybydirectinhibitionofdualspecificitytyrosineregulatedkinase2 AT guoxing ancientdrugcurcuminimpedes26sproteasomeactivitybydirectinhibitionofdualspecificitytyrosineregulatedkinase2 |