Cargando…

Mice harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity

SLC30A8 encodes a zinc transporter that is primarily expressed in the pancreatic islets of Langerhans. In β-cells it transports zinc into insulin-containing secretory granules. Loss-of-function (LOF) mutations in SLC30A8 protect against type 2 diabetes in humans. In this study, we generated a knocki...

Descripción completa

Detalles Bibliográficos
Autores principales: Kleiner, Sandra, Gomez, Daniel, Megra, Bezawit, Na, Erqian, Bhavsar, Ramandeep, Cavino, Katie, Xin, Yurong, Rojas, Jose, Dominguez-Gutierrez, Giselle, Zambrowicz, Brian, Carrat, Gaelle, Chabosseau, Pauline, Hu, Ming, Murphy, Andrew J., Yancopoulos, George D., Rutter, Guy A., Gromada, Jesper
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6094147/
https://www.ncbi.nlm.nih.gov/pubmed/30038024
http://dx.doi.org/10.1073/pnas.1721418115
_version_ 1783347768443535360
author Kleiner, Sandra
Gomez, Daniel
Megra, Bezawit
Na, Erqian
Bhavsar, Ramandeep
Cavino, Katie
Xin, Yurong
Rojas, Jose
Dominguez-Gutierrez, Giselle
Zambrowicz, Brian
Carrat, Gaelle
Chabosseau, Pauline
Hu, Ming
Murphy, Andrew J.
Yancopoulos, George D.
Rutter, Guy A.
Gromada, Jesper
author_facet Kleiner, Sandra
Gomez, Daniel
Megra, Bezawit
Na, Erqian
Bhavsar, Ramandeep
Cavino, Katie
Xin, Yurong
Rojas, Jose
Dominguez-Gutierrez, Giselle
Zambrowicz, Brian
Carrat, Gaelle
Chabosseau, Pauline
Hu, Ming
Murphy, Andrew J.
Yancopoulos, George D.
Rutter, Guy A.
Gromada, Jesper
author_sort Kleiner, Sandra
collection PubMed
description SLC30A8 encodes a zinc transporter that is primarily expressed in the pancreatic islets of Langerhans. In β-cells it transports zinc into insulin-containing secretory granules. Loss-of-function (LOF) mutations in SLC30A8 protect against type 2 diabetes in humans. In this study, we generated a knockin mouse model carrying one of the most common human LOF mutations for SLC30A8, R138X. The R138X mice had normal body weight, glucose tolerance, and pancreatic β-cell mass. Interestingly, in hyperglycemic conditions induced by the insulin receptor antagonist S961, the R138X mice showed a 50% increase in insulin secretion. This effect was not associated with enhanced β-cell proliferation or mass. Our data suggest that the SLC30A8 R138X LOF mutation may exert beneficial effects on glucose metabolism by increasing the capacity of β-cells to secrete insulin under hyperglycemic conditions.
format Online
Article
Text
id pubmed-6094147
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-60941472018-08-17 Mice harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity Kleiner, Sandra Gomez, Daniel Megra, Bezawit Na, Erqian Bhavsar, Ramandeep Cavino, Katie Xin, Yurong Rojas, Jose Dominguez-Gutierrez, Giselle Zambrowicz, Brian Carrat, Gaelle Chabosseau, Pauline Hu, Ming Murphy, Andrew J. Yancopoulos, George D. Rutter, Guy A. Gromada, Jesper Proc Natl Acad Sci U S A PNAS Plus SLC30A8 encodes a zinc transporter that is primarily expressed in the pancreatic islets of Langerhans. In β-cells it transports zinc into insulin-containing secretory granules. Loss-of-function (LOF) mutations in SLC30A8 protect against type 2 diabetes in humans. In this study, we generated a knockin mouse model carrying one of the most common human LOF mutations for SLC30A8, R138X. The R138X mice had normal body weight, glucose tolerance, and pancreatic β-cell mass. Interestingly, in hyperglycemic conditions induced by the insulin receptor antagonist S961, the R138X mice showed a 50% increase in insulin secretion. This effect was not associated with enhanced β-cell proliferation or mass. Our data suggest that the SLC30A8 R138X LOF mutation may exert beneficial effects on glucose metabolism by increasing the capacity of β-cells to secrete insulin under hyperglycemic conditions. National Academy of Sciences 2018-08-07 2018-07-23 /pmc/articles/PMC6094147/ /pubmed/30038024 http://dx.doi.org/10.1073/pnas.1721418115 Text en Copyright © 2018 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle PNAS Plus
Kleiner, Sandra
Gomez, Daniel
Megra, Bezawit
Na, Erqian
Bhavsar, Ramandeep
Cavino, Katie
Xin, Yurong
Rojas, Jose
Dominguez-Gutierrez, Giselle
Zambrowicz, Brian
Carrat, Gaelle
Chabosseau, Pauline
Hu, Ming
Murphy, Andrew J.
Yancopoulos, George D.
Rutter, Guy A.
Gromada, Jesper
Mice harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity
title Mice harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity
title_full Mice harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity
title_fullStr Mice harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity
title_full_unstemmed Mice harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity
title_short Mice harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity
title_sort mice harboring the human slc30a8 r138x loss-of-function mutation have increased insulin secretory capacity
topic PNAS Plus
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6094147/
https://www.ncbi.nlm.nih.gov/pubmed/30038024
http://dx.doi.org/10.1073/pnas.1721418115
work_keys_str_mv AT kleinersandra miceharboringthehumanslc30a8r138xlossoffunctionmutationhaveincreasedinsulinsecretorycapacity
AT gomezdaniel miceharboringthehumanslc30a8r138xlossoffunctionmutationhaveincreasedinsulinsecretorycapacity
AT megrabezawit miceharboringthehumanslc30a8r138xlossoffunctionmutationhaveincreasedinsulinsecretorycapacity
AT naerqian miceharboringthehumanslc30a8r138xlossoffunctionmutationhaveincreasedinsulinsecretorycapacity
AT bhavsarramandeep miceharboringthehumanslc30a8r138xlossoffunctionmutationhaveincreasedinsulinsecretorycapacity
AT cavinokatie miceharboringthehumanslc30a8r138xlossoffunctionmutationhaveincreasedinsulinsecretorycapacity
AT xinyurong miceharboringthehumanslc30a8r138xlossoffunctionmutationhaveincreasedinsulinsecretorycapacity
AT rojasjose miceharboringthehumanslc30a8r138xlossoffunctionmutationhaveincreasedinsulinsecretorycapacity
AT dominguezgutierrezgiselle miceharboringthehumanslc30a8r138xlossoffunctionmutationhaveincreasedinsulinsecretorycapacity
AT zambrowiczbrian miceharboringthehumanslc30a8r138xlossoffunctionmutationhaveincreasedinsulinsecretorycapacity
AT carratgaelle miceharboringthehumanslc30a8r138xlossoffunctionmutationhaveincreasedinsulinsecretorycapacity
AT chabosseaupauline miceharboringthehumanslc30a8r138xlossoffunctionmutationhaveincreasedinsulinsecretorycapacity
AT huming miceharboringthehumanslc30a8r138xlossoffunctionmutationhaveincreasedinsulinsecretorycapacity
AT murphyandrewj miceharboringthehumanslc30a8r138xlossoffunctionmutationhaveincreasedinsulinsecretorycapacity
AT yancopoulosgeorged miceharboringthehumanslc30a8r138xlossoffunctionmutationhaveincreasedinsulinsecretorycapacity
AT rutterguya miceharboringthehumanslc30a8r138xlossoffunctionmutationhaveincreasedinsulinsecretorycapacity
AT gromadajesper miceharboringthehumanslc30a8r138xlossoffunctionmutationhaveincreasedinsulinsecretorycapacity