Cargando…

Design of a Small-Scale Multi-Inlet Vortex Mixer for Scalable Nanoparticle Production and Application to the Encapsulation of Biologics by Inverse Flash NanoPrecipitation

Flash NanoPrecipitation is a scalable approach to generate polymeric nanoparticles using rapid micromixing in specially designed geometries such as a confined impinging jets mixer or a Multi-Inlet Vortex Mixer (MIVM). A major limitation of formulation screening using the MIVM is that a single run re...

Descripción completa

Detalles Bibliográficos
Autores principales: Markwalter, Chester E., Prud'homme, Robert K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095068/
https://www.ncbi.nlm.nih.gov/pubmed/29772223
http://dx.doi.org/10.1016/j.xphs.2018.05.003
Descripción
Sumario:Flash NanoPrecipitation is a scalable approach to generate polymeric nanoparticles using rapid micromixing in specially designed geometries such as a confined impinging jets mixer or a Multi-Inlet Vortex Mixer (MIVM). A major limitation of formulation screening using the MIVM is that a single run requires tens of milligrams of the therapeutic. To overcome this, we have developed a scaled-down version of the MIVM, requiring as little as 0.2 mg of therapeutic, for formulation screening. The redesigned mixer can then be attached to pumps for scale-up of the identified formulation. It was shown that Reynolds number allowed accurate scaling between the 2 MIVM designs. The utility of the small-scale MIVM for formulation development was demonstrated through the encapsulation of a number of hydrophilic macromolecules using inverse Flash NanoPrecipitation with target loadings as high as 50% by mass.