Cargando…
Linear mapping approximation of gene regulatory networks with stochastic dynamics
The presence of protein–DNA binding reactions often leads to analytically intractable models of stochastic gene expression. Here we present the linear-mapping approximation that maps systems with protein–promoter interactions onto approximately equivalent systems with no binding reactions. This is a...
Autores principales: | Cao, Zhixing, Grima, Ramon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6098115/ https://www.ncbi.nlm.nih.gov/pubmed/30120244 http://dx.doi.org/10.1038/s41467-018-05822-0 |
Ejemplares similares
-
How reliable is the linear noise approximation of gene regulatory networks?
por: Thomas, Philipp, et al.
Publicado: (2013) -
The slow-scale linear noise approximation: an accurate, reduced stochastic description of biochemical networks under timescale separation conditions
por: Thomas, Philipp, et al.
Publicado: (2012) -
Analytical approximations for spatial stochastic gene expression in single cells and tissues
por: Smith, Stephen, et al.
Publicado: (2016) -
Analytical distributions for detailed models of stochastic gene expression in eukaryotic cells
por: Cao, Zhixing, et al.
Publicado: (2020) -
Neural network aided approximation and parameter inference of non-Markovian models of gene expression
por: Jiang, Qingchao, et al.
Publicado: (2021)