Cargando…
Process Optimization, Characterization and Antioxidant Capacity of Oat (Avena Sativa L.) Bran Oil Extracted by Subcritical Butane Extraction
Oat bran is a traditional agricultural byproduct and rarely used in edible oil processing. In this paper, oat bran oil (OBO) was firstly extracted by subcritical butane extraction (SBE) and the extraction process was optimized using response surface methodology. Three variables involving liquid-to-s...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099595/ https://www.ncbi.nlm.nih.gov/pubmed/29954066 http://dx.doi.org/10.3390/molecules23071546 |
Sumario: | Oat bran is a traditional agricultural byproduct and rarely used in edible oil processing. In this paper, oat bran oil (OBO) was firstly extracted by subcritical butane extraction (SBE) and the extraction process was optimized using response surface methodology. Three variables involving liquid-to-solid ratio, extraction time and extraction temperature were studied. The optimum conditions for extraction of OBO were obtained as follows: liquid-to-solid ratio 4.30, extraction time 48.15 min, and extraction temperature 46.52 °C. Based on this, an alternative method (SBE-e) for cosolvent (ethanol) was proposed to improve SBE method. Compared to conventional hexane extraction (CHE), the SBE-e had significant effect on yield, bioactive compounds (phytosterols and phenols) and antioxidant capacity (AC) in the extracted OBO. The results indicated that the proposed methods were appropriate for OBO extraction. Additionally, OBO had the potential to be an acceptable substitute for edible oil, owing to its desirable physicochemical characteristics, a balanced fatty acids composition and high antioxidant capacity. |
---|