Cargando…
Room-Temperature Fabricated Thin-Film Transistors Based on Compounds with Lanthanum and Main Family Element Boron
For the first time, compounds with lanthanum from the main family element Boron (LaB(x)) were investigated as an active layer for thin-film transistors (TFTs). Detailed studies showed that the room-temperature fabricated LaB(x) thin film was in the crystalline state with a relatively narrow optical...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099821/ https://www.ncbi.nlm.nih.gov/pubmed/29882837 http://dx.doi.org/10.3390/molecules23061373 |
Sumario: | For the first time, compounds with lanthanum from the main family element Boron (LaB(x)) were investigated as an active layer for thin-film transistors (TFTs). Detailed studies showed that the room-temperature fabricated LaB(x) thin film was in the crystalline state with a relatively narrow optical band gap of 2.28 eV. The atom ration of La/B was related to the working pressure during the sputtering process and the atom ration of La/B increased with the increase of the working pressure, which will result in the freer electrons in the LaB(x) thin film. LaB(x)-TFT without any intentionally annealing steps exhibited a saturation mobility of 0.44 cm(2)·V(−1)·s(−1), which is a subthreshold swing (SS) of 0.26 V/decade and a I(on)/I(off) ratio larger than 10(4). The room-temperature process is attractive for its compatibility with almost all kinds of flexible substrates and the LaB(x) semiconductor may be a new choice for the channel materials in TFTs. |
---|