Cargando…

Potential Mechanism of Action of Cyclosporin A in Human Dermal Fibroblasts—Transcriptomic Analysis of CYPs

Effect of cyclosporin A (CsA) in a therapeutic concentration, on the expression of cytochrome P450 genes (CYPs), was investigated in normal human dermal fibroblast cells. The expression of 57 genes, encoding cytochrome P450 isoforms, was estimated using the microarray method. Amongst 396 normalized...

Descripción completa

Detalles Bibliográficos
Autores principales: Janikowska, Grażyna, Pyka-Pająk, Alina, Janikowski, Tomasz, Adamska, Jolanta, Mazurek, Urszula, Jędrusik, Przemysław
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6100361/
https://www.ncbi.nlm.nih.gov/pubmed/29976866
http://dx.doi.org/10.3390/molecules23071642
Descripción
Sumario:Effect of cyclosporin A (CsA) in a therapeutic concentration, on the expression of cytochrome P450 genes (CYPs), was investigated in normal human dermal fibroblast cells. The expression of 57 genes, encoding cytochrome P450 isoforms, was estimated using the microarray method. Amongst 396 normalized fluorescence signals related to cytochrome P450 activity, only 91 were strictly connected to CYPs and were analyzed using two methods: a self-organizing feature map of artificial neural networks and typical statistical analysis with significance level at p ≤ 0.05. Comparing the samples from fibroblasts cultured with CsA and those cultured without, up-regulated changes of CYP19A1, 1B1, 7A1, 7F1, 17A1 and down-regulated 2D6 gene expression were observed. The mRNAs with increased changes were in the same neuron of the self-organizing feature map. All distinguished CYPs encode monooxygenases, which plays an important role in steroids biosynthesis and metabolism. Based on the obtained results, we can conclude that CsA in therapeutic concentration changes the expression profile of CYPs in human dermal fibroblasts, especially affecting genes linked to steroids synthesis and/or metabolism. It shows the potential mechanism of action of CsA in human dermal fibroblast cells.