Cargando…

Cyclopeptide COR-1 to treat beta1-adrenergic receptor antibody-induced heart failure

RATIONALE: Despite advances in pharmacotherapy, heart failure still incurs significant morbidity and mortality. Stimulating antibodies directed against the secondextracellular loop of the human ß(1)-adrenergic receptor (anti-ß(1)EC2) cause myocyte damage and heart failure in rats. This receptor doma...

Descripción completa

Detalles Bibliográficos
Autores principales: Boivin-Jahns, Valérie, Uhland, Kerstin, Holthoff, Hans-Peter, Beyersdorf, Niklas, Kocoski, Vladimir, Kerkau, Thomas, Münch, Götz, Lohse, Martin J., Ungerer, Martin, Jahns, Roland
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6101361/
https://www.ncbi.nlm.nih.gov/pubmed/30125285
http://dx.doi.org/10.1371/journal.pone.0201160
Descripción
Sumario:RATIONALE: Despite advances in pharmacotherapy, heart failure still incurs significant morbidity and mortality. Stimulating antibodies directed against the secondextracellular loop of the human ß(1)-adrenergic receptor (anti-ß(1)EC2) cause myocyte damage and heart failure in rats. This receptor domain is 100% homologous between rats and humans. OBJECTIVE: ß(1)EC2-mimicking cyclopeptides (25-meric) markedly improved the development and/or course of anti-ß(1)EC2-mediated cardiomyopathy. Further developments should be investigated. METHODS AND RESULTS: The shortened 18-meric cyclic peptide COR-1, in which one of the two disulphide bonds was removed to enable reproducible GMP production, can also be used to treat cardiomyopathic rats. Echocardiography, catheterization and histopathology of the rat hearts revealed that monthly intravenous administrations of COR-1 almost fully reversed the cardiomyopathic phenotype within 6 months at doses of 1 to 4 mg/kg body weight. Administration of COR-1 resulted in markedly reduced anti-ß(1)EC2-expressing memory B lymphocytes in the spleen despite continued antigenic boosts, but did not significantly decrease overall peripheral anti-ß(1)EC2 titers. COR-1 did not induce any anti-ß(1)EC2 or other immune response in naïve rats (corresponding to findings in healthy human volunteers). It did not cause any toxic side effects in GLP studies in dogs, rats or mice, and the “no observed adverse effect level” (NOAEL) exceeded the therapeutic doses by 100-fold. CONCLUSION: The second generation immunomodulating epitope-mimicking cyclopeptide COR-1 (also termed JNJ-5442840) offers promise to treat immune-mediated cardiac diseases.