Cargando…
Synthesis and Biological Evaluation of Azamacrolide Comprising the Triazole Moiety as Quorum Sensing Inhibitors
Novel azamacrolides comprising the triazole moiety were synthesized and evaluated for their quorum sensing inhibitor activities on the Agrobacterium tumefaciens. It was found that the inhibition rate of compound Z12-3 at 200 mg/L (0.45 mM) can reach 67%. The potential binding modes between these mol...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6102594/ https://www.ncbi.nlm.nih.gov/pubmed/29734673 http://dx.doi.org/10.3390/molecules23051086 |
Sumario: | Novel azamacrolides comprising the triazole moiety were synthesized and evaluated for their quorum sensing inhibitor activities on the Agrobacterium tumefaciens. It was found that the inhibition rate of compound Z12-3 at 200 mg/L (0.45 mM) can reach 67%. The potential binding modes between these molecules and the TraR QS receptor was performed by molecular docking. The results showed that the two nitrogen atoms in the triazole ring of Z12-3 formed hydrogen bonds with GLN-2, and the carbonyl group (C=O) in the amide formed hydrogen bonds with water. It was worth noting that the carbonyl group on the macrolides formed hydrogen bonds with the G-106 base in the DNA. These azamacrolides may block quorum sensing expression through key amino acid residues or DNA bases in the TraR QS receptor by hydrogen-bonded. |
---|