Cargando…
Metal-free alcohol-directed regioselective heteroarylation of remote unactivated C(sp(3))–H bonds
Construction of C–C bonds via alkoxy radical-mediated remote C(sp(3))–H functionalization is largely unexplored, as it is a formidable challenge to directly generate alkoxy radicals from alcohols due to the high bond dissociation energy (BDE) of O–H bonds. Disclosed herein is a practical and elusive...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104081/ https://www.ncbi.nlm.nih.gov/pubmed/30131495 http://dx.doi.org/10.1038/s41467-018-05522-9 |
Sumario: | Construction of C–C bonds via alkoxy radical-mediated remote C(sp(3))–H functionalization is largely unexplored, as it is a formidable challenge to directly generate alkoxy radicals from alcohols due to the high bond dissociation energy (BDE) of O–H bonds. Disclosed herein is a practical and elusive metal-free alcohol-directed heteroarylation of remote unactivated C(sp(3))–H bonds. Phenyliodine bis(trifluoroacetate) (PIFA) is used as the only reagent to enable the coupling of alcohols and heteroaryls. Alkoxy radicals are readily generated from free alcohols under the irradiation of visible light, which trigger the regioselective hydrogen-atom transfer (HAT). A wide range of functional groups are compatible with the mild reaction conditions. Two unactivated C–H bonds are cleaved and one new C–C bond is constructed during the reaction. This protocol provides an efficient strategy for the late-stage functionalization of alcohols and heteroaryls. |
---|