Cargando…
The crystal structure of KSHV ORF57 reveals dimeric active sites important for protein stability and function
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a γ-herpesvirus closely associated with Kaposi’s sarcoma, primary effusion lymphoma and multicentric Castleman disease. Open reading frame 57 (ORF57), a viral early protein of KSHV promotes splicing, stability and translation of viral mRNA and is ess...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6105031/ https://www.ncbi.nlm.nih.gov/pubmed/30096191 http://dx.doi.org/10.1371/journal.ppat.1007232 |
_version_ | 1783349594217775104 |
---|---|
author | Yuan, Fei Gao, Zeng-Qiang Majerciak, Vladimir Bai, Lei Hu, Meng-Lu Lin, Xiao-Xi Zheng, Zhi-Ming Dong, Yu-Hui Lan, Ke |
author_facet | Yuan, Fei Gao, Zeng-Qiang Majerciak, Vladimir Bai, Lei Hu, Meng-Lu Lin, Xiao-Xi Zheng, Zhi-Ming Dong, Yu-Hui Lan, Ke |
author_sort | Yuan, Fei |
collection | PubMed |
description | Kaposi’s sarcoma-associated herpesvirus (KSHV) is a γ-herpesvirus closely associated with Kaposi’s sarcoma, primary effusion lymphoma and multicentric Castleman disease. Open reading frame 57 (ORF57), a viral early protein of KSHV promotes splicing, stability and translation of viral mRNA and is essential for viral lytic replication. Previous studies demonstrated that dimerization of ORF57 stabilizes the protein, which is critical for its function. However, the detailed structural basis of dimerization was not elucidated. In this study, we report the crystal structures of the C-terminal domain (CTD) of ORF57 (ORF57-CTD) in both dimer at 3.5 Å and monomer at 3.0 Å. Both structures reveal that ORF57-CTD binds a single zinc ion through the consensus zinc-binding motif at the bottom of each monomer. In addition, the N-terminal residues 167–222 of ORF57-CTD protrudes a long “arm” and holds the globular domains of the neighboring monomer, while the C-terminal residues 445–454 are locked into the globular domain in cis and the globular domains interact in trans. In vitro crosslinking and nuclear translocation assays showed that either deletion of the “arm” region or substitution of key residues at the globular interface led to severe dimer dissociation. Introduction of point mutation into the zinc-binding motif also led to sharp degradation of KSHV ORF57 and other herpesvirus homologues. These data indicate that the “arm” region, the residues at the globular interface and the zinc-binding motif are all equally important in ORF57 protein dimerization and stability. Consistently, KSHV recombinant virus with the disrupted zinc-binding motif by point mutation exhibited a significant reduction in the RNA level of ORF57 downstream genes ORF59 and K8.1 and infectious virus production. Taken together, this study illustrates the first structure of KSHV ORF57-CTD and provides new insights into the understanding of ORF57 protein dimerization and stability, which would shed light on the potential design of novel therapeutics against KSHV infection and related diseases. |
format | Online Article Text |
id | pubmed-6105031 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-61050312018-08-30 The crystal structure of KSHV ORF57 reveals dimeric active sites important for protein stability and function Yuan, Fei Gao, Zeng-Qiang Majerciak, Vladimir Bai, Lei Hu, Meng-Lu Lin, Xiao-Xi Zheng, Zhi-Ming Dong, Yu-Hui Lan, Ke PLoS Pathog Research Article Kaposi’s sarcoma-associated herpesvirus (KSHV) is a γ-herpesvirus closely associated with Kaposi’s sarcoma, primary effusion lymphoma and multicentric Castleman disease. Open reading frame 57 (ORF57), a viral early protein of KSHV promotes splicing, stability and translation of viral mRNA and is essential for viral lytic replication. Previous studies demonstrated that dimerization of ORF57 stabilizes the protein, which is critical for its function. However, the detailed structural basis of dimerization was not elucidated. In this study, we report the crystal structures of the C-terminal domain (CTD) of ORF57 (ORF57-CTD) in both dimer at 3.5 Å and monomer at 3.0 Å. Both structures reveal that ORF57-CTD binds a single zinc ion through the consensus zinc-binding motif at the bottom of each monomer. In addition, the N-terminal residues 167–222 of ORF57-CTD protrudes a long “arm” and holds the globular domains of the neighboring monomer, while the C-terminal residues 445–454 are locked into the globular domain in cis and the globular domains interact in trans. In vitro crosslinking and nuclear translocation assays showed that either deletion of the “arm” region or substitution of key residues at the globular interface led to severe dimer dissociation. Introduction of point mutation into the zinc-binding motif also led to sharp degradation of KSHV ORF57 and other herpesvirus homologues. These data indicate that the “arm” region, the residues at the globular interface and the zinc-binding motif are all equally important in ORF57 protein dimerization and stability. Consistently, KSHV recombinant virus with the disrupted zinc-binding motif by point mutation exhibited a significant reduction in the RNA level of ORF57 downstream genes ORF59 and K8.1 and infectious virus production. Taken together, this study illustrates the first structure of KSHV ORF57-CTD and provides new insights into the understanding of ORF57 protein dimerization and stability, which would shed light on the potential design of novel therapeutics against KSHV infection and related diseases. Public Library of Science 2018-08-10 /pmc/articles/PMC6105031/ /pubmed/30096191 http://dx.doi.org/10.1371/journal.ppat.1007232 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Yuan, Fei Gao, Zeng-Qiang Majerciak, Vladimir Bai, Lei Hu, Meng-Lu Lin, Xiao-Xi Zheng, Zhi-Ming Dong, Yu-Hui Lan, Ke The crystal structure of KSHV ORF57 reveals dimeric active sites important for protein stability and function |
title | The crystal structure of KSHV ORF57 reveals dimeric active sites important for protein stability and function |
title_full | The crystal structure of KSHV ORF57 reveals dimeric active sites important for protein stability and function |
title_fullStr | The crystal structure of KSHV ORF57 reveals dimeric active sites important for protein stability and function |
title_full_unstemmed | The crystal structure of KSHV ORF57 reveals dimeric active sites important for protein stability and function |
title_short | The crystal structure of KSHV ORF57 reveals dimeric active sites important for protein stability and function |
title_sort | crystal structure of kshv orf57 reveals dimeric active sites important for protein stability and function |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6105031/ https://www.ncbi.nlm.nih.gov/pubmed/30096191 http://dx.doi.org/10.1371/journal.ppat.1007232 |
work_keys_str_mv | AT yuanfei thecrystalstructureofkshvorf57revealsdimericactivesitesimportantforproteinstabilityandfunction AT gaozengqiang thecrystalstructureofkshvorf57revealsdimericactivesitesimportantforproteinstabilityandfunction AT majerciakvladimir thecrystalstructureofkshvorf57revealsdimericactivesitesimportantforproteinstabilityandfunction AT bailei thecrystalstructureofkshvorf57revealsdimericactivesitesimportantforproteinstabilityandfunction AT humenglu thecrystalstructureofkshvorf57revealsdimericactivesitesimportantforproteinstabilityandfunction AT linxiaoxi thecrystalstructureofkshvorf57revealsdimericactivesitesimportantforproteinstabilityandfunction AT zhengzhiming thecrystalstructureofkshvorf57revealsdimericactivesitesimportantforproteinstabilityandfunction AT dongyuhui thecrystalstructureofkshvorf57revealsdimericactivesitesimportantforproteinstabilityandfunction AT lanke thecrystalstructureofkshvorf57revealsdimericactivesitesimportantforproteinstabilityandfunction AT yuanfei crystalstructureofkshvorf57revealsdimericactivesitesimportantforproteinstabilityandfunction AT gaozengqiang crystalstructureofkshvorf57revealsdimericactivesitesimportantforproteinstabilityandfunction AT majerciakvladimir crystalstructureofkshvorf57revealsdimericactivesitesimportantforproteinstabilityandfunction AT bailei crystalstructureofkshvorf57revealsdimericactivesitesimportantforproteinstabilityandfunction AT humenglu crystalstructureofkshvorf57revealsdimericactivesitesimportantforproteinstabilityandfunction AT linxiaoxi crystalstructureofkshvorf57revealsdimericactivesitesimportantforproteinstabilityandfunction AT zhengzhiming crystalstructureofkshvorf57revealsdimericactivesitesimportantforproteinstabilityandfunction AT dongyuhui crystalstructureofkshvorf57revealsdimericactivesitesimportantforproteinstabilityandfunction AT lanke crystalstructureofkshvorf57revealsdimericactivesitesimportantforproteinstabilityandfunction |