Cargando…
Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane
Necroptosis, a form of cell loss involving the RIP1‐RIP3‐MLKL axis, has been identified in cardiac pathologies while its inhibition is cardioprotective. We investigated whether the improvement of heart function because of ischaemic preconditioning is associated with mitigation of necroptotic signali...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111849/ https://www.ncbi.nlm.nih.gov/pubmed/29921042 http://dx.doi.org/10.1111/jcmm.13697 |
_version_ | 1783350745781764096 |
---|---|
author | Szobi, Adrián Farkašová‐Ledvényiová, Veronika Lichý, Martin Muráriková, Martina Čarnická, Slávka Ravingerová, Tatiana Adameová, Adriana |
author_facet | Szobi, Adrián Farkašová‐Ledvényiová, Veronika Lichý, Martin Muráriková, Martina Čarnická, Slávka Ravingerová, Tatiana Adameová, Adriana |
author_sort | Szobi, Adrián |
collection | PubMed |
description | Necroptosis, a form of cell loss involving the RIP1‐RIP3‐MLKL axis, has been identified in cardiac pathologies while its inhibition is cardioprotective. We investigated whether the improvement of heart function because of ischaemic preconditioning is associated with mitigation of necroptotic signaling, and these effects were compared with a pharmacological antinecroptotic approach targeting RIP1. Langendorff‐perfused rat hearts were subjected to ischaemic preconditioning with or without a RIP1 inhibitor (Nec‐1s). Necroptotic signaling and the assessment of oxidative damage and a putative involvement of CaMKII in this process were analysed in whole tissue and subcellular fractions. Ischaemic preconditioning, Nec‐1s and their combination improved postischaemic heart function recovery and reduced infarct size to a similar degree what was in line with the prevention of MLKL oligomerization and translocation to the membrane. On the other hand, membrane peroxidation and apoptosis were unchanged by either approach. Ischaemic preconditioning failed to ameliorate ischaemia–reperfusion‐induced increase in RIP1 and RIP3 while pSer229‐RIP3 levels were reduced only by Nec‐1s. In spite of the additive phosphorylation of CaMKII and PLN because of ditherapy, the postischaemic contractile force and relaxation was comparably improved in all the intervention groups while antiarrhythmic effects were observed in the ischaemic preconditioning group only. Necroptosis inhibition seems to be involved in cardioprotection of ischaemic preconditioning and is comparable but not intensified by an anti‐RIP1 agent. Changes in oxidative stress nor CaMKII signaling are unlikely to explain the beneficial effects. |
format | Online Article Text |
id | pubmed-6111849 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61118492018-09-01 Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane Szobi, Adrián Farkašová‐Ledvényiová, Veronika Lichý, Martin Muráriková, Martina Čarnická, Slávka Ravingerová, Tatiana Adameová, Adriana J Cell Mol Med Original Articles Necroptosis, a form of cell loss involving the RIP1‐RIP3‐MLKL axis, has been identified in cardiac pathologies while its inhibition is cardioprotective. We investigated whether the improvement of heart function because of ischaemic preconditioning is associated with mitigation of necroptotic signaling, and these effects were compared with a pharmacological antinecroptotic approach targeting RIP1. Langendorff‐perfused rat hearts were subjected to ischaemic preconditioning with or without a RIP1 inhibitor (Nec‐1s). Necroptotic signaling and the assessment of oxidative damage and a putative involvement of CaMKII in this process were analysed in whole tissue and subcellular fractions. Ischaemic preconditioning, Nec‐1s and their combination improved postischaemic heart function recovery and reduced infarct size to a similar degree what was in line with the prevention of MLKL oligomerization and translocation to the membrane. On the other hand, membrane peroxidation and apoptosis were unchanged by either approach. Ischaemic preconditioning failed to ameliorate ischaemia–reperfusion‐induced increase in RIP1 and RIP3 while pSer229‐RIP3 levels were reduced only by Nec‐1s. In spite of the additive phosphorylation of CaMKII and PLN because of ditherapy, the postischaemic contractile force and relaxation was comparably improved in all the intervention groups while antiarrhythmic effects were observed in the ischaemic preconditioning group only. Necroptosis inhibition seems to be involved in cardioprotection of ischaemic preconditioning and is comparable but not intensified by an anti‐RIP1 agent. Changes in oxidative stress nor CaMKII signaling are unlikely to explain the beneficial effects. John Wiley and Sons Inc. 2018-06-19 2018-09 /pmc/articles/PMC6111849/ /pubmed/29921042 http://dx.doi.org/10.1111/jcmm.13697 Text en © 2018 Comenius University in Bratislava, Faculty of Pharmacy. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Szobi, Adrián Farkašová‐Ledvényiová, Veronika Lichý, Martin Muráriková, Martina Čarnická, Slávka Ravingerová, Tatiana Adameová, Adriana Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane |
title | Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane |
title_full | Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane |
title_fullStr | Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane |
title_full_unstemmed | Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane |
title_short | Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane |
title_sort | cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of mlkl within the plasma membrane |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111849/ https://www.ncbi.nlm.nih.gov/pubmed/29921042 http://dx.doi.org/10.1111/jcmm.13697 |
work_keys_str_mv | AT szobiadrian cardioprotectionofischaemicpreconditioningisassociatedwithinhibitionoftranslocationofmlklwithintheplasmamembrane AT farkasovaledvenyiovaveronika cardioprotectionofischaemicpreconditioningisassociatedwithinhibitionoftranslocationofmlklwithintheplasmamembrane AT lichymartin cardioprotectionofischaemicpreconditioningisassociatedwithinhibitionoftranslocationofmlklwithintheplasmamembrane AT murarikovamartina cardioprotectionofischaemicpreconditioningisassociatedwithinhibitionoftranslocationofmlklwithintheplasmamembrane AT carnickaslavka cardioprotectionofischaemicpreconditioningisassociatedwithinhibitionoftranslocationofmlklwithintheplasmamembrane AT ravingerovatatiana cardioprotectionofischaemicpreconditioningisassociatedwithinhibitionoftranslocationofmlklwithintheplasmamembrane AT adameovaadriana cardioprotectionofischaemicpreconditioningisassociatedwithinhibitionoftranslocationofmlklwithintheplasmamembrane |