Cargando…

Lapatinib, a Dual Inhibitor of Epidermal Growth Factor Receptor (EGFR) and HER-2, Enhances Radiosensitivity in Mouse Bladder Tumor Line-2 (MBT-2) Cells In Vitro and In Vivo

BACKGROUND: The aim of this study was to evaluate the effect of lapatinib, a dual inhibitor of epidermal growth factor receptor (EGFR) and HER-2, on the radiosensitivity of murine bladder tumor line-2 (MBT-2) cells in vitro and in vivo. MATERIAL/METHODS: MBT-2 cells were pretreated with lapatinib at...

Descripción completa

Detalles Bibliográficos
Autores principales: Mu, Yi, Sun, Deyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113922/
https://www.ncbi.nlm.nih.gov/pubmed/30125265
http://dx.doi.org/10.12659/MSM.909865
Descripción
Sumario:BACKGROUND: The aim of this study was to evaluate the effect of lapatinib, a dual inhibitor of epidermal growth factor receptor (EGFR) and HER-2, on the radiosensitivity of murine bladder tumor line-2 (MBT-2) cells in vitro and in vivo. MATERIAL/METHODS: MBT-2 cells were pretreated with lapatinib at doses ranging from 200–1,000 nM for 30 min followed by radiation at doses ranging from 2.5–10 Gy for 30 min. A clonogenic assay (colony formation assay) assessed cell survival. Western blot measured phosphorylated epidermal growth factor receptor (p-EGFR), phosphorylated AKT (p-AKT), and phosphorylated HER-2 (p-HER2) and the apoptosis marker, PARP. The C3H/HeN mouse tumor xenograft model underwent subcutaneous injection of MBT-2 cells; mice were divided into four groups, treated with lapatinib (200 mg/kg), radiation (15 Gy), a combination of both, and with vehicle (control). RESULTS: Lapatinib pretreatment, combined with radiation, decreased MBT-2 cell survival, and suppressed radiation-activated levels of p-EGFR and p-HER-2. MBT-2 cells treated with a 10 Gy dose of radiation and 1000 nM of lapatinib showed combination index (CI) values of <1 indicating synergy. Increased expression of γ-H2AX, indicated increased apoptosis. In mice with tumor xenografts, a daily dose of lapatinib (200 mg/kg/day) for seven days combined with radiation on the fourth day suppressed tumor growth to a greater degree than radiation alone. CONCLUSIONS: Lapatinib treatment enhanced the radiation sensitivity in an in vitro and in vivo murine bladder cancer model by decreasing radiation-mediated EGFR and HER-2 activation, and by causing DNA damage leading to cell apoptosis.