Cargando…
Single-stranded binding proteins and helicase enhance the activity of prokaryotic argonautes in vitro
Prokaryotic argonautes are a unique class of nucleic acid-guided endonucleases putatively involved in cellular defense against foreign genetic elements. While their eukaryotic homologs and Cas protein counterparts require single-stranded RNAs as guides, some prokaryotic argonautes are able to utiliz...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114923/ https://www.ncbi.nlm.nih.gov/pubmed/30157272 http://dx.doi.org/10.1371/journal.pone.0203073 |
Sumario: | Prokaryotic argonautes are a unique class of nucleic acid-guided endonucleases putatively involved in cellular defense against foreign genetic elements. While their eukaryotic homologs and Cas protein counterparts require single-stranded RNAs as guides, some prokaryotic argonautes are able to utilize short single-stranded DNAs as guides for sequence-specific endonuclease activity. Many complications currently prevent the use of prokaryotic argonautes for in vivo gene-editing applications; however, they do exhibit potential as a new class of in vitro molecular tools if certain challenges can be overcome, specifically the limitations on substrate accessibility which leads to unequal levels of activity across a broad palate of substrates and the inability to act on double-stranded DNA substrates. Here we demonstrate the use of accessory factors, including thermostable single-stranded DNA binding proteins and UvrD-like helicase, in conjunction with prokaryotic argonautes to significantly improve enzymatic activity and enable functionality with a broader range of substrates, including linear double-stranded DNA substrates. We also demonstrate the use of Thermus thermophilus argonaute with accessory factors as a programmable restriction enzyme to generate long, unique single-stranded overhangs from linear double-stranded substrates compatible with downstream ligation. |
---|